Step |
Hyp |
Ref |
Expression |
1 |
|
ldilset.b |
|- B = ( Base ` K ) |
2 |
|
ldilset.l |
|- .<_ = ( le ` K ) |
3 |
|
ldilset.h |
|- H = ( LHyp ` K ) |
4 |
|
ldilset.i |
|- I = ( LAut ` K ) |
5 |
|
elex |
|- ( K e. C -> K e. _V ) |
6 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
7 |
6 3
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
8 |
|
fveq2 |
|- ( k = K -> ( LAut ` k ) = ( LAut ` K ) ) |
9 |
8 4
|
eqtr4di |
|- ( k = K -> ( LAut ` k ) = I ) |
10 |
|
fveq2 |
|- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
11 |
10 1
|
eqtr4di |
|- ( k = K -> ( Base ` k ) = B ) |
12 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
13 |
12 2
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
14 |
13
|
breqd |
|- ( k = K -> ( x ( le ` k ) w <-> x .<_ w ) ) |
15 |
14
|
imbi1d |
|- ( k = K -> ( ( x ( le ` k ) w -> ( f ` x ) = x ) <-> ( x .<_ w -> ( f ` x ) = x ) ) ) |
16 |
11 15
|
raleqbidv |
|- ( k = K -> ( A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) <-> A. x e. B ( x .<_ w -> ( f ` x ) = x ) ) ) |
17 |
9 16
|
rabeqbidv |
|- ( k = K -> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } = { f e. I | A. x e. B ( x .<_ w -> ( f ` x ) = x ) } ) |
18 |
7 17
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) = ( w e. H |-> { f e. I | A. x e. B ( x .<_ w -> ( f ` x ) = x ) } ) ) |
19 |
|
df-ldil |
|- LDil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) ) |
20 |
18 19 3
|
mptfvmpt |
|- ( K e. _V -> ( LDil ` K ) = ( w e. H |-> { f e. I | A. x e. B ( x .<_ w -> ( f ` x ) = x ) } ) ) |
21 |
5 20
|
syl |
|- ( K e. C -> ( LDil ` K ) = ( w e. H |-> { f e. I | A. x e. B ( x .<_ w -> ( f ` x ) = x ) } ) ) |