| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cldil |
|- LDil |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
clh |
|- LHyp |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
| 7 |
|
vf |
|- f |
| 8 |
|
claut |
|- LAut |
| 9 |
5 8
|
cfv |
|- ( LAut ` k ) |
| 10 |
|
vx |
|- x |
| 11 |
|
cbs |
|- Base |
| 12 |
5 11
|
cfv |
|- ( Base ` k ) |
| 13 |
10
|
cv |
|- x |
| 14 |
|
cple |
|- le |
| 15 |
5 14
|
cfv |
|- ( le ` k ) |
| 16 |
3
|
cv |
|- w |
| 17 |
13 16 15
|
wbr |
|- x ( le ` k ) w |
| 18 |
7
|
cv |
|- f |
| 19 |
13 18
|
cfv |
|- ( f ` x ) |
| 20 |
19 13
|
wceq |
|- ( f ` x ) = x |
| 21 |
17 20
|
wi |
|- ( x ( le ` k ) w -> ( f ` x ) = x ) |
| 22 |
21 10 12
|
wral |
|- A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) |
| 23 |
22 7 9
|
crab |
|- { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } |
| 24 |
3 6 23
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) |
| 25 |
1 2 24
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) ) |
| 26 |
0 25
|
wceq |
|- LDil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { f e. ( LAut ` k ) | A. x e. ( Base ` k ) ( x ( le ` k ) w -> ( f ` x ) = x ) } ) ) |