Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg2inv.h |
|
2 |
|
cdlemg2inv.t |
|
3 |
|
cdlemg2j.l |
|
4 |
|
cdlemg2j.j |
|
5 |
|
cdlemg2j.a |
|
6 |
|
cdlemg2j.m |
|
7 |
|
cdlemg2j.u |
|
8 |
1 2 3 4 5 6 7
|
cdlemg2k |
|
9 |
8
|
oveq1d |
|
10 |
|
simp1 |
|
11 |
|
simp3 |
|
12 |
|
simp2l |
|
13 |
|
eqid |
|
14 |
3 6 13 5 1 2
|
ltrnmw |
|
15 |
10 11 12 14
|
syl3anc |
|
16 |
15
|
oveq1d |
|
17 |
|
simp1l |
|
18 |
3 5 1 2
|
ltrnel |
|
19 |
10 11 12 18
|
syl3anc |
|
20 |
19
|
simpld |
|
21 |
|
simp1r |
|
22 |
|
simp2ll |
|
23 |
|
simp2rl |
|
24 |
|
eqid |
|
25 |
3 4 6 5 1 7 24
|
cdleme0aa |
|
26 |
17 21 22 23 25
|
syl211anc |
|
27 |
24 1
|
lhpbase |
|
28 |
21 27
|
syl |
|
29 |
17
|
hllatd |
|
30 |
24 4 5
|
hlatjcl |
|
31 |
17 22 23 30
|
syl3anc |
|
32 |
24 3 6
|
latmle2 |
|
33 |
29 31 28 32
|
syl3anc |
|
34 |
7 33
|
eqbrtrid |
|
35 |
24 3 4 6 5
|
atmod4i2 |
|
36 |
17 20 26 28 34 35
|
syl131anc |
|
37 |
|
hlol |
|
38 |
17 37
|
syl |
|
39 |
24 4 13
|
olj02 |
|
40 |
38 26 39
|
syl2anc |
|
41 |
16 36 40
|
3eqtr3d |
|
42 |
9 41
|
eqtrd |
|