Metamath Proof Explorer


Theorem cdlemg2m

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h H = LHyp K
cdlemg2inv.t T = LTrn K W
cdlemg2j.l ˙ = K
cdlemg2j.j ˙ = join K
cdlemg2j.a A = Atoms K
cdlemg2j.m ˙ = meet K
cdlemg2j.u U = P ˙ Q ˙ W
Assertion cdlemg2m K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q ˙ W = U

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h H = LHyp K
2 cdlemg2inv.t T = LTrn K W
3 cdlemg2j.l ˙ = K
4 cdlemg2j.j ˙ = join K
5 cdlemg2j.a A = Atoms K
6 cdlemg2j.m ˙ = meet K
7 cdlemg2j.u U = P ˙ Q ˙ W
8 1 2 3 4 5 6 7 cdlemg2k K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q = F P ˙ U
9 8 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q ˙ W = F P ˙ U ˙ W
10 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T K HL W H
11 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F T
12 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P A ¬ P ˙ W
13 eqid 0. K = 0. K
14 3 6 13 5 1 2 ltrnmw K HL W H F T P A ¬ P ˙ W F P ˙ W = 0. K
15 10 11 12 14 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ W = 0. K
16 15 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ W ˙ U = 0. K ˙ U
17 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T K HL
18 3 5 1 2 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
19 10 11 12 18 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P A ¬ F P ˙ W
20 19 simpld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P A
21 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T W H
22 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P A
23 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T Q A
24 eqid Base K = Base K
25 3 4 6 5 1 7 24 cdleme0aa K HL W H P A Q A U Base K
26 17 21 22 23 25 syl211anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T U Base K
27 24 1 lhpbase W H W Base K
28 21 27 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T W Base K
29 17 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T K Lat
30 24 4 5 hlatjcl K HL P A Q A P ˙ Q Base K
31 17 22 23 30 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P ˙ Q Base K
32 24 3 6 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
33 29 31 28 32 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P ˙ Q ˙ W ˙ W
34 7 33 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T U ˙ W
35 24 3 4 6 5 atmod4i2 K HL F P A U Base K W Base K U ˙ W F P ˙ W ˙ U = F P ˙ U ˙ W
36 17 20 26 28 34 35 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ W ˙ U = F P ˙ U ˙ W
37 hlol K HL K OL
38 17 37 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T K OL
39 24 4 13 olj02 K OL U Base K 0. K ˙ U = U
40 38 26 39 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T 0. K ˙ U = U
41 16 36 40 3eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ U ˙ W = U
42 9 41 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q ˙ W = U