Metamath Proof Explorer


Theorem ltrnel

Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in Crawley p. 112. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses ltrnel.l ˙ = K
ltrnel.a A = Atoms K
ltrnel.h H = LHyp K
ltrnel.t T = LTrn K W
Assertion ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙ = K
2 ltrnel.a A = Atoms K
3 ltrnel.h H = LHyp K
4 ltrnel.t T = LTrn K W
5 simp3l K HL W H F T P A ¬ P ˙ W P A
6 eqid Base K = Base K
7 6 2 atbase P A P Base K
8 7 adantr P A ¬ P ˙ W P Base K
9 6 2 3 4 ltrnatb K HL W H F T P Base K P A F P A
10 8 9 syl3an3 K HL W H F T P A ¬ P ˙ W P A F P A
11 5 10 mpbid K HL W H F T P A ¬ P ˙ W F P A
12 simp3r K HL W H F T P A ¬ P ˙ W ¬ P ˙ W
13 simp1 K HL W H F T P A ¬ P ˙ W K HL W H
14 simp2 K HL W H F T P A ¬ P ˙ W F T
15 5 7 syl K HL W H F T P A ¬ P ˙ W P Base K
16 simp1r K HL W H F T P A ¬ P ˙ W W H
17 6 3 lhpbase W H W Base K
18 16 17 syl K HL W H F T P A ¬ P ˙ W W Base K
19 6 1 3 4 ltrnle K HL W H F T P Base K W Base K P ˙ W F P ˙ F W
20 13 14 15 18 19 syl112anc K HL W H F T P A ¬ P ˙ W P ˙ W F P ˙ F W
21 simp1l K HL W H F T P A ¬ P ˙ W K HL
22 21 hllatd K HL W H F T P A ¬ P ˙ W K Lat
23 6 1 latref K Lat W Base K W ˙ W
24 22 18 23 syl2anc K HL W H F T P A ¬ P ˙ W W ˙ W
25 6 1 3 4 ltrnval1 K HL W H F T W Base K W ˙ W F W = W
26 13 14 18 24 25 syl112anc K HL W H F T P A ¬ P ˙ W F W = W
27 26 breq2d K HL W H F T P A ¬ P ˙ W F P ˙ F W F P ˙ W
28 20 27 bitrd K HL W H F T P A ¬ P ˙ W P ˙ W F P ˙ W
29 12 28 mtbid K HL W H F T P A ¬ P ˙ W ¬ F P ˙ W
30 11 29 jca K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W