Metamath Proof Explorer


Theorem ltrnel

Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in Crawley p. 112. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses ltrnel.l ˙=K
ltrnel.a A=AtomsK
ltrnel.h H=LHypK
ltrnel.t T=LTrnKW
Assertion ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙=K
2 ltrnel.a A=AtomsK
3 ltrnel.h H=LHypK
4 ltrnel.t T=LTrnKW
5 simp3l KHLWHFTPA¬P˙WPA
6 eqid BaseK=BaseK
7 6 2 atbase PAPBaseK
8 7 adantr PA¬P˙WPBaseK
9 6 2 3 4 ltrnatb KHLWHFTPBaseKPAFPA
10 8 9 syl3an3 KHLWHFTPA¬P˙WPAFPA
11 5 10 mpbid KHLWHFTPA¬P˙WFPA
12 simp3r KHLWHFTPA¬P˙W¬P˙W
13 simp1 KHLWHFTPA¬P˙WKHLWH
14 simp2 KHLWHFTPA¬P˙WFT
15 5 7 syl KHLWHFTPA¬P˙WPBaseK
16 simp1r KHLWHFTPA¬P˙WWH
17 6 3 lhpbase WHWBaseK
18 16 17 syl KHLWHFTPA¬P˙WWBaseK
19 6 1 3 4 ltrnle KHLWHFTPBaseKWBaseKP˙WFP˙FW
20 13 14 15 18 19 syl112anc KHLWHFTPA¬P˙WP˙WFP˙FW
21 simp1l KHLWHFTPA¬P˙WKHL
22 21 hllatd KHLWHFTPA¬P˙WKLat
23 6 1 latref KLatWBaseKW˙W
24 22 18 23 syl2anc KHLWHFTPA¬P˙WW˙W
25 6 1 3 4 ltrnval1 KHLWHFTWBaseKW˙WFW=W
26 13 14 18 24 25 syl112anc KHLWHFTPA¬P˙WFW=W
27 26 breq2d KHLWHFTPA¬P˙WFP˙FWFP˙W
28 20 27 bitrd KHLWHFTPA¬P˙WP˙WFP˙W
29 12 28 mtbid KHLWHFTPA¬P˙W¬FP˙W
30 11 29 jca KHLWHFTPA¬P˙WFPA¬FP˙W