Metamath Proof Explorer


Theorem ltrnval1

Description: Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnval1.b B=BaseK
ltrnval1.l ˙=K
ltrnval1.h H=LHypK
ltrnval1.t T=LTrnKW
Assertion ltrnval1 KVWHFTXBX˙WFX=X

Proof

Step Hyp Ref Expression
1 ltrnval1.b B=BaseK
2 ltrnval1.l ˙=K
3 ltrnval1.h H=LHypK
4 ltrnval1.t T=LTrnKW
5 eqid LDilKW=LDilKW
6 3 5 4 ltrnldil KVWHFTFLDilKW
7 6 3adant3 KVWHFTXBX˙WFLDilKW
8 1 2 3 5 ldilval KVWHFLDilKWXBX˙WFX=X
9 7 8 syld3an2 KVWHFTXBX˙WFX=X