Metamath Proof Explorer


Theorem ltrnldil

Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnldil.h H = LHyp K
ltrnldil.d D = LDil K W
ltrnldil.t T = LTrn K W
Assertion ltrnldil K V W H F T F D

Proof

Step Hyp Ref Expression
1 ltrnldil.h H = LHyp K
2 ltrnldil.d D = LDil K W
3 ltrnldil.t T = LTrn K W
4 eqid K = K
5 eqid join K = join K
6 eqid meet K = meet K
7 eqid Atoms K = Atoms K
8 4 5 6 7 1 2 3 isltrn K V W H F T F D p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F p meet K W = q join K F q meet K W
9 8 simprbda K V W H F T F D