Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ltrnldil
Next ⟩
ltrnlaut
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrnldil
Description:
A lattice translation is a lattice dilation.
(Contributed by
NM
, 20-May-2012)
Ref
Expression
Hypotheses
ltrnldil.h
⊢
H
=
LHyp
⁡
K
ltrnldil.d
⊢
D
=
LDil
⁡
K
⁡
W
ltrnldil.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
ltrnldil
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
D
Proof
Step
Hyp
Ref
Expression
1
ltrnldil.h
⊢
H
=
LHyp
⁡
K
2
ltrnldil.d
⊢
D
=
LDil
⁡
K
⁡
W
3
ltrnldil.t
⊢
T
=
LTrn
⁡
K
⁡
W
4
eqid
⊢
≤
K
=
≤
K
5
eqid
⊢
join
⁡
K
=
join
⁡
K
6
eqid
⊢
meet
⁡
K
=
meet
⁡
K
7
eqid
⊢
Atoms
⁡
K
=
Atoms
⁡
K
8
4
5
6
7
1
2
3
isltrn
⊢
K
∈
V
∧
W
∈
H
→
F
∈
T
↔
F
∈
D
∧
∀
p
∈
Atoms
⁡
K
∀
q
∈
Atoms
⁡
K
¬
p
≤
K
W
∧
¬
q
≤
K
W
→
p
join
⁡
K
F
⁡
p
meet
⁡
K
W
=
q
join
⁡
K
F
⁡
q
meet
⁡
K
W
9
8
simprbda
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
D