Metamath Proof Explorer


Theorem ltrnldil

Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnldil.h
|- H = ( LHyp ` K )
ltrnldil.d
|- D = ( ( LDil ` K ) ` W )
ltrnldil.t
|- T = ( ( LTrn ` K ) ` W )
Assertion ltrnldil
|- ( ( ( K e. V /\ W e. H ) /\ F e. T ) -> F e. D )

Proof

Step Hyp Ref Expression
1 ltrnldil.h
 |-  H = ( LHyp ` K )
2 ltrnldil.d
 |-  D = ( ( LDil ` K ) ` W )
3 ltrnldil.t
 |-  T = ( ( LTrn ` K ) ` W )
4 eqid
 |-  ( le ` K ) = ( le ` K )
5 eqid
 |-  ( join ` K ) = ( join ` K )
6 eqid
 |-  ( meet ` K ) = ( meet ` K )
7 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
8 4 5 6 7 1 2 3 isltrn
 |-  ( ( K e. V /\ W e. H ) -> ( F e. T <-> ( F e. D /\ A. p e. ( Atoms ` K ) A. q e. ( Atoms ` K ) ( ( -. p ( le ` K ) W /\ -. q ( le ` K ) W ) -> ( ( p ( join ` K ) ( F ` p ) ) ( meet ` K ) W ) = ( ( q ( join ` K ) ( F ` q ) ) ( meet ` K ) W ) ) ) ) )
9 8 simprbda
 |-  ( ( ( K e. V /\ W e. H ) /\ F e. T ) -> F e. D )