Metamath Proof Explorer


Theorem isltrn

Description: The predicate "is a lattice translation". Similar to definition of translation in Crawley p. 111. (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ltrnset.l ˙=K
ltrnset.j ˙=joinK
ltrnset.m ˙=meetK
ltrnset.a A=AtomsK
ltrnset.h H=LHypK
ltrnset.d D=LDilKW
ltrnset.t T=LTrnKW
Assertion isltrn KBWHFTFDpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W

Proof

Step Hyp Ref Expression
1 ltrnset.l ˙=K
2 ltrnset.j ˙=joinK
3 ltrnset.m ˙=meetK
4 ltrnset.a A=AtomsK
5 ltrnset.h H=LHypK
6 ltrnset.d D=LDilKW
7 ltrnset.t T=LTrnKW
8 1 2 3 4 5 6 7 ltrnset KBWHT=fD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W
9 8 eleq2d KBWHFTFfD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W
10 fveq1 f=Ffp=Fp
11 10 oveq2d f=Fp˙fp=p˙Fp
12 11 oveq1d f=Fp˙fp˙W=p˙Fp˙W
13 fveq1 f=Ffq=Fq
14 13 oveq2d f=Fq˙fq=q˙Fq
15 14 oveq1d f=Fq˙fq˙W=q˙Fq˙W
16 12 15 eqeq12d f=Fp˙fp˙W=q˙fq˙Wp˙Fp˙W=q˙Fq˙W
17 16 imbi2d f=F¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
18 17 2ralbidv f=FpAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙WpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
19 18 elrab FfD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙WFDpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
20 9 19 bitrdi KBWHFTFDpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W