Metamath Proof Explorer


Theorem ltrnset

Description: The set of lattice translations for a fiducial co-atom W . (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ltrnset.l ˙=K
ltrnset.j ˙=joinK
ltrnset.m ˙=meetK
ltrnset.a A=AtomsK
ltrnset.h H=LHypK
ltrnset.d D=LDilKW
ltrnset.t T=LTrnKW
Assertion ltrnset KBWHT=fD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W

Proof

Step Hyp Ref Expression
1 ltrnset.l ˙=K
2 ltrnset.j ˙=joinK
3 ltrnset.m ˙=meetK
4 ltrnset.a A=AtomsK
5 ltrnset.h H=LHypK
6 ltrnset.d D=LDilKW
7 ltrnset.t T=LTrnKW
8 1 2 3 4 5 ltrnfset KBLTrnK=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
9 8 fveq1d KBLTrnKW=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙wW
10 7 9 eqtrid KBT=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙wW
11 fveq2 w=WLDilKw=LDilKW
12 11 6 eqtr4di w=WLDilKw=D
13 breq2 w=Wp˙wp˙W
14 13 notbid w=W¬p˙w¬p˙W
15 breq2 w=Wq˙wq˙W
16 15 notbid w=W¬q˙w¬q˙W
17 14 16 anbi12d w=W¬p˙w¬q˙w¬p˙W¬q˙W
18 oveq2 w=Wp˙fp˙w=p˙fp˙W
19 oveq2 w=Wq˙fq˙w=q˙fq˙W
20 18 19 eqeq12d w=Wp˙fp˙w=q˙fq˙wp˙fp˙W=q˙fq˙W
21 17 20 imbi12d w=W¬p˙w¬q˙wp˙fp˙w=q˙fq˙w¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W
22 21 2ralbidv w=WpAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙wpAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W
23 12 22 rabeqbidv w=WfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w=fD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W
24 eqid wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
25 6 fvexi DV
26 25 rabex fD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙WV
27 23 24 26 fvmpt WHwHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙wW=fD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W
28 10 27 sylan9eq KBWHT=fD|pAqA¬p˙W¬q˙Wp˙fp˙W=q˙fq˙W