Metamath Proof Explorer


Theorem ldilval

Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ldilval.b B=BaseK
ldilval.l ˙=K
ldilval.h H=LHypK
ldilval.d D=LDilKW
Assertion ldilval KVWHFDXBX˙WFX=X

Proof

Step Hyp Ref Expression
1 ldilval.b B=BaseK
2 ldilval.l ˙=K
3 ldilval.h H=LHypK
4 ldilval.d D=LDilKW
5 eqid LAutK=LAutK
6 1 2 3 5 4 isldil KVWHFDFLAutKxBx˙WFx=x
7 simpr FLAutKxBx˙WFx=xxBx˙WFx=x
8 6 7 syl6bi KVWHFDxBx˙WFx=x
9 breq1 x=Xx˙WX˙W
10 fveq2 x=XFx=FX
11 id x=Xx=X
12 10 11 eqeq12d x=XFx=xFX=X
13 9 12 imbi12d x=Xx˙WFx=xX˙WFX=X
14 13 rspccv xBx˙WFx=xXBX˙WFX=X
15 14 impd xBx˙WFx=xXBX˙WFX=X
16 8 15 syl6 KVWHFDXBX˙WFX=X
17 16 3imp KVWHFDXBX˙WFX=X