Step |
Hyp |
Ref |
Expression |
1 |
|
ldilval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ldilval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
ldilval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
ldilval.d |
⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 ) |
6 |
1 2 3 5 4
|
isldil |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 ∈ ( LAut ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( LAut ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
8 |
6 7
|
syl6bi |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝐷 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
9 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
11 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
13 |
9 12
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑋 ≤ 𝑊 → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) ) |
14 |
13
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( 𝑋 ∈ 𝐵 → ( 𝑋 ≤ 𝑊 → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) ) |
15 |
14
|
impd |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
16 |
8 15
|
syl6 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝐷 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) ) |
17 |
16
|
3imp |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝐷 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |