Metamath Proof Explorer


Theorem ldilval

Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ldilval.b 𝐵 = ( Base ‘ 𝐾 )
ldilval.l = ( le ‘ 𝐾 )
ldilval.h 𝐻 = ( LHyp ‘ 𝐾 )
ldilval.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
Assertion ldilval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝐷 ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 ldilval.b 𝐵 = ( Base ‘ 𝐾 )
2 ldilval.l = ( le ‘ 𝐾 )
3 ldilval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ldilval.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 )
6 1 2 3 5 4 isldil ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐹𝐷 ↔ ( 𝐹 ∈ ( LAut ‘ 𝐾 ) ∧ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) ) )
7 simpr ( ( 𝐹 ∈ ( LAut ‘ 𝐾 ) ∧ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) → ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) )
8 6 7 syl6bi ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐹𝐷 → ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) )
9 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑊𝑋 𝑊 ) )
10 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
11 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
12 10 11 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑋 ) = 𝑋 ) )
13 9 12 imbi12d ( 𝑥 = 𝑋 → ( ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ↔ ( 𝑋 𝑊 → ( 𝐹𝑋 ) = 𝑋 ) ) )
14 13 rspccv ( ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) → ( 𝑋𝐵 → ( 𝑋 𝑊 → ( 𝐹𝑋 ) = 𝑋 ) ) )
15 14 impd ( ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) → ( ( 𝑋𝐵𝑋 𝑊 ) → ( 𝐹𝑋 ) = 𝑋 ) )
16 8 15 syl6 ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐹𝐷 → ( ( 𝑋𝐵𝑋 𝑊 ) → ( 𝐹𝑋 ) = 𝑋 ) ) )
17 16 3imp ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝐷 ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝑋 )