| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idldil.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | idldil.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | idldil.d | ⊢ 𝐷  =  ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( LAut ‘ 𝐾 )  =  ( LAut ‘ 𝐾 ) | 
						
							| 5 | 1 4 | idlaut | ⊢ ( 𝐾  ∈  𝐴  →  (  I   ↾  𝐵 )  ∈  ( LAut ‘ 𝐾 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑊  ∈  𝐻 )  →  (  I   ↾  𝐵 )  ∈  ( LAut ‘ 𝐾 ) ) | 
						
							| 7 |  | fvresi | ⊢ ( 𝑥  ∈  𝐵  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 8 | 7 | a1d | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑥 ( le ‘ 𝐾 ) 𝑊  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 ) ) | 
						
							| 9 | 8 | rgen | ⊢ ∀ 𝑥  ∈  𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑊  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑊  ∈  𝐻 )  →  ∀ 𝑥  ∈  𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑊  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 ) ) | 
						
							| 11 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 12 | 1 11 2 4 3 | isldil | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑊  ∈  𝐻 )  →  ( (  I   ↾  𝐵 )  ∈  𝐷  ↔  ( (  I   ↾  𝐵 )  ∈  ( LAut ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑊  →  ( (  I   ↾  𝐵 ) ‘ 𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 13 | 6 10 12 | mpbir2and | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑊  ∈  𝐻 )  →  (  I   ↾  𝐵 )  ∈  𝐷 ) |