Metamath Proof Explorer


Theorem idlaut

Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses idlaut.b 𝐵 = ( Base ‘ 𝐾 )
idlaut.i 𝐼 = ( LAut ‘ 𝐾 )
Assertion idlaut ( 𝐾𝐴 → ( I ↾ 𝐵 ) ∈ 𝐼 )

Proof

Step Hyp Ref Expression
1 idlaut.b 𝐵 = ( Base ‘ 𝐾 )
2 idlaut.i 𝐼 = ( LAut ‘ 𝐾 )
3 f1oi ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵
4 3 a1i ( 𝐾𝐴 → ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵 )
5 fvresi ( 𝑥𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 )
6 fvresi ( 𝑦𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 )
7 5 6 breqan12d ( ( 𝑥𝐵𝑦𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ↔ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) )
8 7 bicomd ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) )
9 8 rgen2 𝑥𝐵𝑦𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) )
10 9 a1i ( 𝐾𝐴 → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) )
11 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
12 1 11 2 islaut ( 𝐾𝐴 → ( ( I ↾ 𝐵 ) ∈ 𝐼 ↔ ( ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) ) )
13 4 10 12 mpbir2and ( 𝐾𝐴 → ( I ↾ 𝐵 ) ∈ 𝐼 )