Metamath Proof Explorer


Theorem ltrnid

Description: A lattice translation is the identity function iff all atoms not under the fiducial co-atom W are equal to their values. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses ltrneq.b B = Base K
ltrneq.l ˙ = K
ltrneq.a A = Atoms K
ltrneq.h H = LHyp K
ltrneq.t T = LTrn K W
Assertion ltrnid K HL W H F T p A ¬ p ˙ W F p = p F = I B

Proof

Step Hyp Ref Expression
1 ltrneq.b B = Base K
2 ltrneq.l ˙ = K
3 ltrneq.a A = Atoms K
4 ltrneq.h H = LHyp K
5 ltrneq.t T = LTrn K W
6 simp-4l K HL W H F T p A ¬ p ˙ W F p = p x B K HL
7 eqid LAut K = LAut K
8 4 7 5 ltrnlaut K HL W H F T F LAut K
9 8 ad2antrr K HL W H F T p A ¬ p ˙ W F p = p x B F LAut K
10 simpr K HL W H F T p A ¬ p ˙ W F p = p x B x B
11 simplll K HL W H F T p A p ˙ W K HL W H
12 simpllr K HL W H F T p A p ˙ W F T
13 1 3 atbase p A p B
14 13 ad2antlr K HL W H F T p A p ˙ W p B
15 simpr K HL W H F T p A p ˙ W p ˙ W
16 1 2 4 5 ltrnval1 K HL W H F T p B p ˙ W F p = p
17 11 12 14 15 16 syl112anc K HL W H F T p A p ˙ W F p = p
18 17 ex K HL W H F T p A p ˙ W F p = p
19 pm2.61 p ˙ W F p = p ¬ p ˙ W F p = p F p = p
20 18 19 syl K HL W H F T p A ¬ p ˙ W F p = p F p = p
21 20 ralimdva K HL W H F T p A ¬ p ˙ W F p = p p A F p = p
22 21 imp K HL W H F T p A ¬ p ˙ W F p = p p A F p = p
23 22 adantr K HL W H F T p A ¬ p ˙ W F p = p x B p A F p = p
24 1 3 7 lauteq K HL F LAut K x B p A F p = p F x = x
25 6 9 10 23 24 syl31anc K HL W H F T p A ¬ p ˙ W F p = p x B F x = x
26 fvresi x B I B x = x
27 26 adantl K HL W H F T p A ¬ p ˙ W F p = p x B I B x = x
28 25 27 eqtr4d K HL W H F T p A ¬ p ˙ W F p = p x B F x = I B x
29 28 ralrimiva K HL W H F T p A ¬ p ˙ W F p = p x B F x = I B x
30 1 4 5 ltrn1o K HL W H F T F : B 1-1 onto B
31 30 adantr K HL W H F T p A ¬ p ˙ W F p = p F : B 1-1 onto B
32 f1ofn F : B 1-1 onto B F Fn B
33 31 32 syl K HL W H F T p A ¬ p ˙ W F p = p F Fn B
34 fnresi I B Fn B
35 eqfnfv F Fn B I B Fn B F = I B x B F x = I B x
36 33 34 35 sylancl K HL W H F T p A ¬ p ˙ W F p = p F = I B x B F x = I B x
37 29 36 mpbird K HL W H F T p A ¬ p ˙ W F p = p F = I B
38 37 ex K HL W H F T p A ¬ p ˙ W F p = p F = I B
39 13 adantl K HL W H F T p A p B
40 fvresi p B I B p = p
41 39 40 syl K HL W H F T p A I B p = p
42 fveq1 F = I B F p = I B p
43 42 eqeq1d F = I B F p = p I B p = p
44 41 43 syl5ibrcom K HL W H F T p A F = I B F p = p
45 44 a1dd K HL W H F T p A F = I B ¬ p ˙ W F p = p
46 45 ralrimdva K HL W H F T F = I B p A ¬ p ˙ W F p = p
47 38 46 impbid K HL W H F T p A ¬ p ˙ W F p = p F = I B