Metamath Proof Explorer


Theorem ltrnnid

Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom W and not equal to its translation. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses ltrneq.b B=BaseK
ltrneq.l ˙=K
ltrneq.a A=AtomsK
ltrneq.h H=LHypK
ltrneq.t T=LTrnKW
Assertion ltrnnid KHLWHFTFIBpA¬p˙WFpp

Proof

Step Hyp Ref Expression
1 ltrneq.b B=BaseK
2 ltrneq.l ˙=K
3 ltrneq.a A=AtomsK
4 ltrneq.h H=LHypK
5 ltrneq.t T=LTrnKW
6 ralinexa pA¬p˙W¬Fpp¬pA¬p˙WFpp
7 nne ¬FppFp=p
8 7 biimpi ¬FppFp=p
9 8 imim2i ¬p˙W¬Fpp¬p˙WFp=p
10 9 ralimi pA¬p˙W¬FpppA¬p˙WFp=p
11 6 10 sylbir ¬pA¬p˙WFpppA¬p˙WFp=p
12 1 2 3 4 5 ltrnid KHLWHFTpA¬p˙WFp=pF=IB
13 11 12 imbitrid KHLWHFT¬pA¬p˙WFppF=IB
14 13 necon1ad KHLWHFTFIBpA¬p˙WFpp
15 14 3impia KHLWHFTFIBpA¬p˙WFpp