| Step |
Hyp |
Ref |
Expression |
| 1 |
|
olj0.b |
|- B = ( Base ` K ) |
| 2 |
|
olj0.j |
|- .\/ = ( join ` K ) |
| 3 |
|
olj0.z |
|- .0. = ( 0. ` K ) |
| 4 |
|
ollat |
|- ( K e. OL -> K e. Lat ) |
| 5 |
4
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> K e. Lat ) |
| 6 |
|
olop |
|- ( K e. OL -> K e. OP ) |
| 7 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
| 8 |
6 7
|
syl |
|- ( K e. OL -> .0. e. B ) |
| 9 |
8
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> .0. e. B ) |
| 10 |
|
simpr |
|- ( ( K e. OL /\ X e. B ) -> X e. B ) |
| 11 |
1 2
|
latjcom |
|- ( ( K e. Lat /\ .0. e. B /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) ) |
| 12 |
5 9 10 11
|
syl3anc |
|- ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) ) |
| 13 |
1 2 3
|
olj01 |
|- ( ( K e. OL /\ X e. B ) -> ( X .\/ .0. ) = X ) |
| 14 |
12 13
|
eqtrd |
|- ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = X ) |