Step |
Hyp |
Ref |
Expression |
1 |
|
olj0.b |
|- B = ( Base ` K ) |
2 |
|
olj0.j |
|- .\/ = ( join ` K ) |
3 |
|
olj0.z |
|- .0. = ( 0. ` K ) |
4 |
|
olop |
|- ( K e. OL -> K e. OP ) |
5 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
6 |
4 5
|
syl |
|- ( K e. OL -> .0. e. B ) |
7 |
6
|
adantr |
|- ( ( K e. OL /\ X e. B ) -> .0. e. B ) |
8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
9 |
|
ollat |
|- ( K e. OL -> K e. Lat ) |
10 |
9
|
3ad2ant1 |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> K e. Lat ) |
11 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) e. B ) |
12 |
9 11
|
syl3an1 |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) e. B ) |
13 |
|
simp2 |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> X e. B ) |
14 |
1 8
|
latref |
|- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) X ) |
15 |
9 14
|
sylan |
|- ( ( K e. OL /\ X e. B ) -> X ( le ` K ) X ) |
16 |
15
|
3adant3 |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> X ( le ` K ) X ) |
17 |
1 8 3
|
op0le |
|- ( ( K e. OP /\ X e. B ) -> .0. ( le ` K ) X ) |
18 |
4 17
|
sylan |
|- ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) X ) |
19 |
18
|
3adant3 |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> .0. ( le ` K ) X ) |
20 |
|
simp3 |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> .0. e. B ) |
21 |
1 8 2
|
latjle12 |
|- ( ( K e. Lat /\ ( X e. B /\ .0. e. B /\ X e. B ) ) -> ( ( X ( le ` K ) X /\ .0. ( le ` K ) X ) <-> ( X .\/ .0. ) ( le ` K ) X ) ) |
22 |
10 13 20 13 21
|
syl13anc |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( ( X ( le ` K ) X /\ .0. ( le ` K ) X ) <-> ( X .\/ .0. ) ( le ` K ) X ) ) |
23 |
16 19 22
|
mpbi2and |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) ( le ` K ) X ) |
24 |
1 8 2
|
latlej1 |
|- ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> X ( le ` K ) ( X .\/ .0. ) ) |
25 |
9 24
|
syl3an1 |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> X ( le ` K ) ( X .\/ .0. ) ) |
26 |
1 8 10 12 13 23 25
|
latasymd |
|- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) = X ) |
27 |
7 26
|
mpd3an3 |
|- ( ( K e. OL /\ X e. B ) -> ( X .\/ .0. ) = X ) |