Metamath Proof Explorer


Theorem cdlemg6a

Description: TODO: FIX COMMENT. TODO: replace with cdlemg4 . (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l
|- .<_ = ( le ` K )
cdlemg4.a
|- A = ( Atoms ` K )
cdlemg4.h
|- H = ( LHyp ` K )
cdlemg4.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg4.r
|- R = ( ( trL ` K ) ` W )
cdlemg4.j
|- .\/ = ( join ` K )
cdlemg4b.v
|- V = ( R ` G )
Assertion cdlemg6a
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( r e. A /\ -. r .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. r .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` r ) ) = r )

Proof

Step Hyp Ref Expression
1 cdlemg4.l
 |-  .<_ = ( le ` K )
2 cdlemg4.a
 |-  A = ( Atoms ` K )
3 cdlemg4.h
 |-  H = ( LHyp ` K )
4 cdlemg4.t
 |-  T = ( ( LTrn ` K ) ` W )
5 cdlemg4.r
 |-  R = ( ( trL ` K ) ` W )
6 cdlemg4.j
 |-  .\/ = ( join ` K )
7 cdlemg4b.v
 |-  V = ( R ` G )
8 1 2 3 4 5 6 7 cdlemg4
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( r e. A /\ -. r .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. r .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` r ) ) = r )