Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg4.a |
|- A = ( Atoms ` K ) |
3 |
|
cdlemg4.h |
|- H = ( LHyp ` K ) |
4 |
|
cdlemg4.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
cdlemg4.r |
|- R = ( ( trL ` K ) ` W ) |
6 |
|
cdlemg4.j |
|- .\/ = ( join ` K ) |
7 |
|
cdlemg4b.v |
|- V = ( R ` G ) |
8 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
9 |
1 2 3 4 5 6 7 8
|
cdlemg4g |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` Q ) ) = ( ( Q .\/ V ) ( meet ` K ) ( P .\/ Q ) ) ) |
10 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> K e. HL ) |
11 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> P e. A ) |
12 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> Q e. A ) |
13 |
6 2
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
15 |
14
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( ( Q .\/ V ) ( meet ` K ) ( P .\/ Q ) ) = ( ( Q .\/ V ) ( meet ` K ) ( Q .\/ P ) ) ) |
16 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> G e. T ) |
18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
19 |
18 3 4 5
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. ( Base ` K ) ) |
20 |
16 17 19
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( R ` G ) e. ( Base ` K ) ) |
21 |
7 20
|
eqeltrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> V e. ( Base ` K ) ) |
22 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> -. Q .<_ ( P .\/ V ) ) |
23 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> -. P .<_ W ) |
24 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( P e. A /\ -. P .<_ W ) ) |
25 |
1 6 8 2 3 4 5
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
26 |
16 17 24 25
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
27 |
7 26
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> V = ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) ) |
28 |
10
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> K e. Lat ) |
29 |
1 2 3 4
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
30 |
16 17 24 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
31 |
30
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( G ` P ) e. A ) |
32 |
18 6 2
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( G ` P ) e. A ) -> ( P .\/ ( G ` P ) ) e. ( Base ` K ) ) |
33 |
10 11 31 32
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( P .\/ ( G ` P ) ) e. ( Base ` K ) ) |
34 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> W e. H ) |
35 |
18 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
36 |
34 35
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> W e. ( Base ` K ) ) |
37 |
18 1 8
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ ( G ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) .<_ W ) |
38 |
28 33 36 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( ( P .\/ ( G ` P ) ) ( meet ` K ) W ) .<_ W ) |
39 |
27 38
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> V .<_ W ) |
40 |
18 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
41 |
11 40
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> P e. ( Base ` K ) ) |
42 |
18 1
|
lattr |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ V e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( P .<_ V /\ V .<_ W ) -> P .<_ W ) ) |
43 |
28 41 21 36 42
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( ( P .<_ V /\ V .<_ W ) -> P .<_ W ) ) |
44 |
39 43
|
mpan2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( P .<_ V -> P .<_ W ) ) |
45 |
23 44
|
mtod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> -. P .<_ V ) |
46 |
18 1 6 2
|
hlexch2 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ V e. ( Base ` K ) ) /\ -. P .<_ V ) -> ( P .<_ ( Q .\/ V ) -> Q .<_ ( P .\/ V ) ) ) |
47 |
10 11 12 21 45 46
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( P .<_ ( Q .\/ V ) -> Q .<_ ( P .\/ V ) ) ) |
48 |
22 47
|
mtod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> -. P .<_ ( Q .\/ V ) ) |
49 |
18 1 6 8 2
|
2llnma1b |
|- ( ( K e. HL /\ ( V e. ( Base ` K ) /\ Q e. A /\ P e. A ) /\ -. P .<_ ( Q .\/ V ) ) -> ( ( Q .\/ V ) ( meet ` K ) ( Q .\/ P ) ) = Q ) |
50 |
10 21 12 11 48 49
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( ( Q .\/ V ) ( meet ` K ) ( Q .\/ P ) ) = Q ) |
51 |
9 15 50
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ -. Q .<_ ( P .\/ V ) /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` Q ) ) = Q ) |