Metamath Proof Explorer


Theorem cdlemg4

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l = ( le ‘ 𝐾 )
cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemg4.j = ( join ‘ 𝐾 )
cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
Assertion cdlemg4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 cdlemg4.l = ( le ‘ 𝐾 )
2 cdlemg4.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg4.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 cdlemg4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemg4.j = ( join ‘ 𝐾 )
7 cdlemg4b.v 𝑉 = ( 𝑅𝐺 )
8 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
9 1 2 3 4 5 6 7 8 cdlemg4g ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = ( ( 𝑄 𝑉 ) ( meet ‘ 𝐾 ) ( 𝑃 𝑄 ) ) )
10 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐾 ∈ HL )
11 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑃𝐴 )
12 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑄𝐴 )
13 6 2 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
14 10 11 12 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
15 14 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝑄 𝑉 ) ( meet ‘ 𝐾 ) ( 𝑃 𝑄 ) ) = ( ( 𝑄 𝑉 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑃 ) ) )
16 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐺𝑇 )
18 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
19 18 3 4 5 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) → ( 𝑅𝐺 ) ∈ ( Base ‘ 𝐾 ) )
20 16 17 19 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑅𝐺 ) ∈ ( Base ‘ 𝐾 ) )
21 7 20 eqeltrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) )
22 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ¬ 𝑄 ( 𝑃 𝑉 ) )
23 simp21r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ¬ 𝑃 𝑊 )
24 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
25 1 6 8 2 3 4 5 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
26 16 17 24 25 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
27 7 26 eqtrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑉 = ( ( 𝑃 ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
28 10 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝐾 ∈ Lat )
29 1 2 3 4 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
30 16 17 24 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
31 30 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐺𝑃 ) ∈ 𝐴 )
32 18 6 2 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝐺𝑃 ) ∈ 𝐴 ) → ( 𝑃 ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
33 10 11 31 32 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃 ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
34 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑊𝐻 )
35 18 3 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
36 34 35 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
37 18 1 8 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ( 𝐺𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑊 )
38 28 33 36 37 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑊 )
39 27 38 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑉 𝑊 )
40 18 2 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
41 11 40 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
42 18 1 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 𝑉𝑉 𝑊 ) → 𝑃 𝑊 ) )
43 28 41 21 36 42 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝑃 𝑉𝑉 𝑊 ) → 𝑃 𝑊 ) )
44 39 43 mpan2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃 𝑉𝑃 𝑊 ) )
45 23 44 mtod ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ¬ 𝑃 𝑉 )
46 18 1 6 2 hlexch2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑉 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑃 𝑉 ) → ( 𝑃 ( 𝑄 𝑉 ) → 𝑄 ( 𝑃 𝑉 ) ) )
47 10 11 12 21 45 46 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝑃 ( 𝑄 𝑉 ) → 𝑄 ( 𝑃 𝑉 ) ) )
48 22 47 mtod ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ¬ 𝑃 ( 𝑄 𝑉 ) )
49 18 1 6 8 2 2llnma1b ( ( 𝐾 ∈ HL ∧ ( 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄𝐴𝑃𝐴 ) ∧ ¬ 𝑃 ( 𝑄 𝑉 ) ) → ( ( 𝑄 𝑉 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑃 ) ) = 𝑄 )
50 10 21 12 11 48 49 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( ( 𝑄 𝑉 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑃 ) ) = 𝑄 )
51 9 15 50 3eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )