Metamath Proof Explorer


Theorem simp21r

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp21r ( ( 𝜏 ∧ ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) ∧ 𝜂 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simp1r ( ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) → 𝜓 )
2 1 3ad2ant2 ( ( 𝜏 ∧ ( ( 𝜑𝜓 ) ∧ 𝜒𝜃 ) ∧ 𝜂 ) → 𝜓 )