Metamath Proof Explorer


Theorem cdlemg4

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙=K
cdlemg4.a A=AtomsK
cdlemg4.h H=LHypK
cdlemg4.t T=LTrnKW
cdlemg4.r R=trLKW
cdlemg4.j ˙=joinK
cdlemg4b.v V=RG
Assertion cdlemg4 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PFGQ=Q

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙=K
2 cdlemg4.a A=AtomsK
3 cdlemg4.h H=LHypK
4 cdlemg4.t T=LTrnKW
5 cdlemg4.r R=trLKW
6 cdlemg4.j ˙=joinK
7 cdlemg4b.v V=RG
8 eqid meetK=meetK
9 1 2 3 4 5 6 7 8 cdlemg4g KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PFGQ=Q˙VmeetKP˙Q
10 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PKHL
11 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PPA
12 simp22l KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PQA
13 6 2 hlatjcom KHLPAQAP˙Q=Q˙P
14 10 11 12 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙Q=Q˙P
15 14 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PQ˙VmeetKP˙Q=Q˙VmeetKQ˙P
16 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PKHLWH
17 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGT
18 eqid BaseK=BaseK
19 18 3 4 5 trlcl KHLWHGTRGBaseK
20 16 17 19 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PRGBaseK
21 7 20 eqeltrid KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PVBaseK
22 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬Q˙P˙V
23 simp21r KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬P˙W
24 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PPA¬P˙W
25 1 6 8 2 3 4 5 trlval2 KHLWHGTPA¬P˙WRG=P˙GPmeetKW
26 16 17 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PRG=P˙GPmeetKW
27 7 26 eqtrid KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PV=P˙GPmeetKW
28 10 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PKLat
29 1 2 3 4 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
30 16 17 24 29 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGPA¬GP˙W
31 30 simpld KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PGPA
32 18 6 2 hlatjcl KHLPAGPAP˙GPBaseK
33 10 11 31 32 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙GPBaseK
34 simp1r KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PWH
35 18 3 lhpbase WHWBaseK
36 34 35 syl KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PWBaseK
37 18 1 8 latmle2 KLatP˙GPBaseKWBaseKP˙GPmeetKW˙W
38 28 33 36 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙GPmeetKW˙W
39 27 38 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PV˙W
40 18 2 atbase PAPBaseK
41 11 40 syl KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PPBaseK
42 18 1 lattr KLatPBaseKVBaseKWBaseKP˙VV˙WP˙W
43 28 41 21 36 42 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙VV˙WP˙W
44 39 43 mpan2d KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙VP˙W
45 23 44 mtod KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬P˙V
46 18 1 6 2 hlexch2 KHLPAQAVBaseK¬P˙VP˙Q˙VQ˙P˙V
47 10 11 12 21 45 46 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PP˙Q˙VQ˙P˙V
48 22 47 mtod KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=P¬P˙Q˙V
49 18 1 6 8 2 2llnma1b KHLVBaseKQAPA¬P˙Q˙VQ˙VmeetKQ˙P=Q
50 10 21 12 11 48 49 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PQ˙VmeetKQ˙P=Q
51 9 15 50 3eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙P˙VFGP=PFGQ=Q