Metamath Proof Explorer


Theorem trlcl

Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trlcl.b B=BaseK
trlcl.h H=LHypK
trlcl.t T=LTrnKW
trlcl.r R=trLKW
Assertion trlcl KHLWHFTRFB

Proof

Step Hyp Ref Expression
1 trlcl.b B=BaseK
2 trlcl.h H=LHypK
3 trlcl.t T=LTrnKW
4 trlcl.r R=trLKW
5 eqid K=K
6 eqid ocK=ocK
7 eqid AtomsK=AtomsK
8 5 6 7 2 lhpocnel KHLWHocKWAtomsK¬ocKWKW
9 8 adantr KHLWHFTocKWAtomsK¬ocKWKW
10 eqid joinK=joinK
11 eqid meetK=meetK
12 5 10 11 7 2 3 4 trlval2 KHLWHFTocKWAtomsK¬ocKWKWRF=ocKWjoinKFocKWmeetKW
13 9 12 mpd3an3 KHLWHFTRF=ocKWjoinKFocKWmeetKW
14 hllat KHLKLat
15 14 ad2antrr KHLWHFTKLat
16 hlop KHLKOP
17 16 ad2antrr KHLWHFTKOP
18 1 2 lhpbase WHWB
19 18 ad2antlr KHLWHFTWB
20 1 6 opoccl KOPWBocKWB
21 17 19 20 syl2anc KHLWHFTocKWB
22 1 2 3 ltrncl KHLWHFTocKWBFocKWB
23 21 22 mpd3an3 KHLWHFTFocKWB
24 1 10 latjcl KLatocKWBFocKWBocKWjoinKFocKWB
25 15 21 23 24 syl3anc KHLWHFTocKWjoinKFocKWB
26 1 11 latmcl KLatocKWjoinKFocKWBWBocKWjoinKFocKWmeetKWB
27 15 25 19 26 syl3anc KHLWHFTocKWjoinKFocKWmeetKWB
28 13 27 eqeltrd KHLWHFTRFB