Metamath Proof Explorer


Theorem trlcnv

Description: The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses trlcnv.h H=LHypK
trlcnv.t T=LTrnKW
trlcnv.r R=trLKW
Assertion trlcnv KHLWHFTRF-1=RF

Proof

Step Hyp Ref Expression
1 trlcnv.h H=LHypK
2 trlcnv.t T=LTrnKW
3 trlcnv.r R=trLKW
4 eqid K=K
5 eqid AtomsK=AtomsK
6 4 5 1 lhpexnle KHLWHpAtomsK¬pKW
7 6 adantr KHLWHFTpAtomsK¬pKW
8 eqid BaseK=BaseK
9 8 1 2 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
10 9 3adant3 KHLWHFTpAtomsK¬pKWF:BaseK1-1 ontoBaseK
11 simp3l KHLWHFTpAtomsK¬pKWpAtomsK
12 8 5 atbase pAtomsKpBaseK
13 11 12 syl KHLWHFTpAtomsK¬pKWpBaseK
14 f1ocnvfv1 F:BaseK1-1 ontoBaseKpBaseKF-1Fp=p
15 10 13 14 syl2anc KHLWHFTpAtomsK¬pKWF-1Fp=p
16 15 oveq2d KHLWHFTpAtomsK¬pKWFpjoinKF-1Fp=FpjoinKp
17 simp1l KHLWHFTpAtomsK¬pKWKHL
18 4 5 1 2 ltrnat KHLWHFTpAtomsKFpAtomsK
19 18 3adant3r KHLWHFTpAtomsK¬pKWFpAtomsK
20 eqid joinK=joinK
21 20 5 hlatjcom KHLFpAtomsKpAtomsKFpjoinKp=pjoinKFp
22 17 19 11 21 syl3anc KHLWHFTpAtomsK¬pKWFpjoinKp=pjoinKFp
23 16 22 eqtrd KHLWHFTpAtomsK¬pKWFpjoinKF-1Fp=pjoinKFp
24 23 oveq1d KHLWHFTpAtomsK¬pKWFpjoinKF-1FpmeetKW=pjoinKFpmeetKW
25 simp1 KHLWHFTpAtomsK¬pKWKHLWH
26 1 2 ltrncnv KHLWHFTF-1T
27 26 3adant3 KHLWHFTpAtomsK¬pKWF-1T
28 4 5 1 2 ltrnel KHLWHFTpAtomsK¬pKWFpAtomsK¬FpKW
29 eqid meetK=meetK
30 4 20 29 5 1 2 3 trlval2 KHLWHF-1TFpAtomsK¬FpKWRF-1=FpjoinKF-1FpmeetKW
31 25 27 28 30 syl3anc KHLWHFTpAtomsK¬pKWRF-1=FpjoinKF-1FpmeetKW
32 4 20 29 5 1 2 3 trlval2 KHLWHFTpAtomsK¬pKWRF=pjoinKFpmeetKW
33 24 31 32 3eqtr4d KHLWHFTpAtomsK¬pKWRF-1=RF
34 33 3expa KHLWHFTpAtomsK¬pKWRF-1=RF
35 7 34 rexlimddv KHLWHFTRF-1=RF