Metamath Proof Explorer


Theorem f1ocnvfv1

Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004)

Ref Expression
Assertion f1ocnvfv1 F:A1-1 ontoBCAF-1FC=C

Proof

Step Hyp Ref Expression
1 f1ococnv1 F:A1-1 ontoBF-1F=IA
2 1 fveq1d F:A1-1 ontoBF-1FC=IAC
3 2 adantr F:A1-1 ontoBCAF-1FC=IAC
4 f1of F:A1-1 ontoBF:AB
5 fvco3 F:ABCAF-1FC=F-1FC
6 4 5 sylan F:A1-1 ontoBCAF-1FC=F-1FC
7 fvresi CAIAC=C
8 7 adantl F:A1-1 ontoBCAIAC=C
9 3 6 8 3eqtr3d F:A1-1 ontoBCAF-1FC=C