Metamath Proof Explorer


Theorem f1ocnvfv1

Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004)

Ref Expression
Assertion f1ocnvfv1 F : A 1-1 onto B C A F -1 F C = C

Proof

Step Hyp Ref Expression
1 f1ococnv1 F : A 1-1 onto B F -1 F = I A
2 1 fveq1d F : A 1-1 onto B F -1 F C = I A C
3 2 adantr F : A 1-1 onto B C A F -1 F C = I A C
4 f1of F : A 1-1 onto B F : A B
5 fvco3 F : A B C A F -1 F C = F -1 F C
6 4 5 sylan F : A 1-1 onto B C A F -1 F C = F -1 F C
7 fvresi C A I A C = C
8 7 adantl F : A 1-1 onto B C A I A C = C
9 3 6 8 3eqtr3d F : A 1-1 onto B C A F -1 F C = C