Metamath Proof Explorer


Theorem ltrncnv

Description: The converse of a lattice translation is a lattice translation. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses ltrncnv.h H=LHypK
ltrncnv.t T=LTrnKW
Assertion ltrncnv KHLWHFTF-1T

Proof

Step Hyp Ref Expression
1 ltrncnv.h H=LHypK
2 ltrncnv.t T=LTrnKW
3 eqid LDilKW=LDilKW
4 1 3 2 ltrnldil KHLWHFTFLDilKW
5 1 3 ldilcnv KHLWHFLDilKWF-1LDilKW
6 4 5 syldan KHLWHFTF-1LDilKW
7 simp1 KHLWHFTpAtomsKqAtomsK¬pKW¬qKWKHLWHFT
8 simp1l KHLWHFTpAtomsKqAtomsK¬pKW¬qKWKHLWH
9 simp1r KHLWHFTpAtomsKqAtomsK¬pKW¬qKWFT
10 simp2l KHLWHFTpAtomsKqAtomsK¬pKW¬qKWpAtomsK
11 simp3l KHLWHFTpAtomsKqAtomsK¬pKW¬qKW¬pKW
12 eqid K=K
13 eqid AtomsK=AtomsK
14 12 13 1 2 ltrncnvel KHLWHFTpAtomsK¬pKWF-1pAtomsK¬F-1pKW
15 8 9 10 11 14 syl112anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1pAtomsK¬F-1pKW
16 simp2r KHLWHFTpAtomsKqAtomsK¬pKW¬qKWqAtomsK
17 simp3r KHLWHFTpAtomsKqAtomsK¬pKW¬qKW¬qKW
18 12 13 1 2 ltrncnvel KHLWHFTqAtomsK¬qKWF-1qAtomsK¬F-1qKW
19 8 9 16 17 18 syl112anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1qAtomsK¬F-1qKW
20 eqid joinK=joinK
21 eqid meetK=meetK
22 12 20 21 13 1 2 ltrnu KHLWHFTF-1pAtomsK¬F-1pKWF-1qAtomsK¬F-1qKWF-1pjoinKFF-1pmeetKW=F-1qjoinKFF-1qmeetKW
23 7 15 19 22 syl3anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1pjoinKFF-1pmeetKW=F-1qjoinKFF-1qmeetKW
24 eqid BaseK=BaseK
25 24 1 2 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
26 25 3ad2ant1 KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF:BaseK1-1 ontoBaseK
27 24 13 atbase pAtomsKpBaseK
28 10 27 syl KHLWHFTpAtomsKqAtomsK¬pKW¬qKWpBaseK
29 f1ocnvfv2 F:BaseK1-1 ontoBaseKpBaseKFF-1p=p
30 26 28 29 syl2anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWFF-1p=p
31 30 oveq2d KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1pjoinKFF-1p=F-1pjoinKp
32 simp1ll KHLWHFTpAtomsKqAtomsK¬pKW¬qKWKHL
33 12 13 1 2 ltrncnvat KHLWHFTpAtomsKF-1pAtomsK
34 8 9 10 33 syl3anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1pAtomsK
35 20 13 hlatjcom KHLF-1pAtomsKpAtomsKF-1pjoinKp=pjoinKF-1p
36 32 34 10 35 syl3anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1pjoinKp=pjoinKF-1p
37 31 36 eqtrd KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1pjoinKFF-1p=pjoinKF-1p
38 37 oveq1d KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1pjoinKFF-1pmeetKW=pjoinKF-1pmeetKW
39 24 13 atbase qAtomsKqBaseK
40 16 39 syl KHLWHFTpAtomsKqAtomsK¬pKW¬qKWqBaseK
41 f1ocnvfv2 F:BaseK1-1 ontoBaseKqBaseKFF-1q=q
42 26 40 41 syl2anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWFF-1q=q
43 42 oveq2d KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1qjoinKFF-1q=F-1qjoinKq
44 12 13 1 2 ltrncnvat KHLWHFTqAtomsKF-1qAtomsK
45 8 9 16 44 syl3anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1qAtomsK
46 20 13 hlatjcom KHLF-1qAtomsKqAtomsKF-1qjoinKq=qjoinKF-1q
47 32 45 16 46 syl3anc KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1qjoinKq=qjoinKF-1q
48 43 47 eqtrd KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1qjoinKFF-1q=qjoinKF-1q
49 48 oveq1d KHLWHFTpAtomsKqAtomsK¬pKW¬qKWF-1qjoinKFF-1qmeetKW=qjoinKF-1qmeetKW
50 23 38 49 3eqtr3d KHLWHFTpAtomsKqAtomsK¬pKW¬qKWpjoinKF-1pmeetKW=qjoinKF-1qmeetKW
51 50 3exp KHLWHFTpAtomsKqAtomsK¬pKW¬qKWpjoinKF-1pmeetKW=qjoinKF-1qmeetKW
52 51 ralrimivv KHLWHFTpAtomsKqAtomsK¬pKW¬qKWpjoinKF-1pmeetKW=qjoinKF-1qmeetKW
53 12 20 21 13 1 3 2 isltrn KHLWHF-1TF-1LDilKWpAtomsKqAtomsK¬pKW¬qKWpjoinKF-1pmeetKW=qjoinKF-1qmeetKW
54 53 adantr KHLWHFTF-1TF-1LDilKWpAtomsKqAtomsK¬pKW¬qKWpjoinKF-1pmeetKW=qjoinKF-1qmeetKW
55 6 52 54 mpbir2and KHLWHFTF-1T