| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrncnv.h |
|
| 2 |
|
ltrncnv.t |
|
| 3 |
|
eqid |
|
| 4 |
1 3 2
|
ltrnldil |
|
| 5 |
1 3
|
ldilcnv |
|
| 6 |
4 5
|
syldan |
|
| 7 |
|
simp1 |
|
| 8 |
|
simp1l |
|
| 9 |
|
simp1r |
|
| 10 |
|
simp2l |
|
| 11 |
|
simp3l |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13 1 2
|
ltrncnvel |
|
| 15 |
8 9 10 11 14
|
syl112anc |
|
| 16 |
|
simp2r |
|
| 17 |
|
simp3r |
|
| 18 |
12 13 1 2
|
ltrncnvel |
|
| 19 |
8 9 16 17 18
|
syl112anc |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
12 20 21 13 1 2
|
ltrnu |
|
| 23 |
7 15 19 22
|
syl3anc |
|
| 24 |
|
eqid |
|
| 25 |
24 1 2
|
ltrn1o |
|
| 26 |
25
|
3ad2ant1 |
|
| 27 |
24 13
|
atbase |
|
| 28 |
10 27
|
syl |
|
| 29 |
|
f1ocnvfv2 |
|
| 30 |
26 28 29
|
syl2anc |
|
| 31 |
30
|
oveq2d |
|
| 32 |
|
simp1ll |
|
| 33 |
12 13 1 2
|
ltrncnvat |
|
| 34 |
8 9 10 33
|
syl3anc |
|
| 35 |
20 13
|
hlatjcom |
|
| 36 |
32 34 10 35
|
syl3anc |
|
| 37 |
31 36
|
eqtrd |
|
| 38 |
37
|
oveq1d |
|
| 39 |
24 13
|
atbase |
|
| 40 |
16 39
|
syl |
|
| 41 |
|
f1ocnvfv2 |
|
| 42 |
26 40 41
|
syl2anc |
|
| 43 |
42
|
oveq2d |
|
| 44 |
12 13 1 2
|
ltrncnvat |
|
| 45 |
8 9 16 44
|
syl3anc |
|
| 46 |
20 13
|
hlatjcom |
|
| 47 |
32 45 16 46
|
syl3anc |
|
| 48 |
43 47
|
eqtrd |
|
| 49 |
48
|
oveq1d |
|
| 50 |
23 38 49
|
3eqtr3d |
|
| 51 |
50
|
3exp |
|
| 52 |
51
|
ralrimivv |
|
| 53 |
12 20 21 13 1 3 2
|
isltrn |
|
| 54 |
53
|
adantr |
|
| 55 |
6 52 54
|
mpbir2and |
|