Metamath Proof Explorer


Theorem ltrnu

Description: Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom W . Similar to definition of translation in Crawley p. 111. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnu.l ˙=K
ltrnu.j ˙=joinK
ltrnu.m ˙=meetK
ltrnu.a A=AtomsK
ltrnu.h H=LHypK
ltrnu.t T=LTrnKW
Assertion ltrnu KVWHFTPA¬P˙WQA¬Q˙WP˙FP˙W=Q˙FQ˙W

Proof

Step Hyp Ref Expression
1 ltrnu.l ˙=K
2 ltrnu.j ˙=joinK
3 ltrnu.m ˙=meetK
4 ltrnu.a A=AtomsK
5 ltrnu.h H=LHypK
6 ltrnu.t T=LTrnKW
7 an4 PA¬P˙WQA¬Q˙WPAQA¬P˙W¬Q˙W
8 simpr KVWHFTPAQAPAQA
9 simplr KVWHFTPAQAFT
10 eqid LDilKW=LDilKW
11 1 2 3 4 5 10 6 isltrn KVWHFTFLDilKWpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
12 11 ad2antrr KVWHFTPAQAFTFLDilKWpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
13 simpr FLDilKWpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙WpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
14 12 13 syl6bi KVWHFTPAQAFTpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
15 9 14 mpd KVWHFTPAQApAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
16 breq1 p=Pp˙WP˙W
17 16 notbid p=P¬p˙W¬P˙W
18 17 anbi1d p=P¬p˙W¬q˙W¬P˙W¬q˙W
19 id p=Pp=P
20 fveq2 p=PFp=FP
21 19 20 oveq12d p=Pp˙Fp=P˙FP
22 21 oveq1d p=Pp˙Fp˙W=P˙FP˙W
23 22 eqeq1d p=Pp˙Fp˙W=q˙Fq˙WP˙FP˙W=q˙Fq˙W
24 18 23 imbi12d p=P¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬P˙W¬q˙WP˙FP˙W=q˙Fq˙W
25 breq1 q=Qq˙WQ˙W
26 25 notbid q=Q¬q˙W¬Q˙W
27 26 anbi2d q=Q¬P˙W¬q˙W¬P˙W¬Q˙W
28 id q=Qq=Q
29 fveq2 q=QFq=FQ
30 28 29 oveq12d q=Qq˙Fq=Q˙FQ
31 30 oveq1d q=Qq˙Fq˙W=Q˙FQ˙W
32 31 eqeq2d q=QP˙FP˙W=q˙Fq˙WP˙FP˙W=Q˙FQ˙W
33 27 32 imbi12d q=Q¬P˙W¬q˙WP˙FP˙W=q˙Fq˙W¬P˙W¬Q˙WP˙FP˙W=Q˙FQ˙W
34 24 33 rspc2v PAQApAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬P˙W¬Q˙WP˙FP˙W=Q˙FQ˙W
35 8 15 34 sylc KVWHFTPAQA¬P˙W¬Q˙WP˙FP˙W=Q˙FQ˙W
36 35 impr KVWHFTPAQA¬P˙W¬Q˙WP˙FP˙W=Q˙FQ˙W
37 7 36 sylan2b KVWHFTPA¬P˙WQA¬Q˙WP˙FP˙W=Q˙FQ˙W
38 37 3impb KVWHFTPA¬P˙WQA¬Q˙WP˙FP˙W=Q˙FQ˙W