Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnu.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
ltrnu.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
ltrnu.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
ltrnu.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
ltrnu.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
ltrnu.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
an4 |
⊢ ( ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ↔ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
9 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐹 ∈ 𝑇 ) |
10 |
|
eqid |
⊢ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
1 2 3 4 5 10 6
|
isltrn |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝑇 ↔ ( 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝐹 ∈ 𝑇 ↔ ( 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) ) |
13 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) |
14 |
12 13
|
syl6bi |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝐹 ∈ 𝑇 → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) |
15 |
9 14
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) |
16 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≤ 𝑊 ↔ 𝑃 ≤ 𝑊 ) ) |
17 |
16
|
notbid |
⊢ ( 𝑝 = 𝑃 → ( ¬ 𝑝 ≤ 𝑊 ↔ ¬ 𝑃 ≤ 𝑊 ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝑝 = 𝑃 → ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ↔ ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ) ) |
19 |
|
id |
⊢ ( 𝑝 = 𝑃 → 𝑝 = 𝑃 ) |
20 |
|
fveq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑃 ) ) |
21 |
19 20
|
oveq12d |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑝 = 𝑃 → ( ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ↔ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) |
24 |
18 23
|
imbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) |
25 |
|
breq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ≤ 𝑊 ↔ 𝑄 ≤ 𝑊 ) ) |
26 |
25
|
notbid |
⊢ ( 𝑞 = 𝑄 → ( ¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑄 ≤ 𝑊 ) ) |
27 |
26
|
anbi2d |
⊢ ( 𝑞 = 𝑄 → ( ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ↔ ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
28 |
|
id |
⊢ ( 𝑞 = 𝑄 → 𝑞 = 𝑄 ) |
29 |
|
fveq2 |
⊢ ( 𝑞 = 𝑄 → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑄 ) ) |
30 |
28 29
|
oveq12d |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ↔ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) ) |
33 |
27 32
|
imbi12d |
⊢ ( 𝑞 = 𝑄 → ( ( ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) ) ) |
34 |
24 33
|
rspc2v |
⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) → ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) → ( ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) ) ) |
35 |
8 15 34
|
sylc |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) ) |
36 |
35
|
impr |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |
37 |
7 36
|
sylan2b |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |
38 |
37
|
3impb |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |