Metamath Proof Explorer


Theorem trljat1

Description: The value of a translation of an atom P not under the fiducial co-atom W , joined with trace. Equation above Lemma C in Crawley p. 112. TODO: shorten with atmod3i1 ? (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trljat.l ˙=K
trljat.j ˙=joinK
trljat.a A=AtomsK
trljat.h H=LHypK
trljat.t T=LTrnKW
trljat.r R=trLKW
Assertion trljat1 KHLWHFTPA¬P˙WP˙RF=P˙FP

Proof

Step Hyp Ref Expression
1 trljat.l ˙=K
2 trljat.j ˙=joinK
3 trljat.a A=AtomsK
4 trljat.h H=LHypK
5 trljat.t T=LTrnKW
6 trljat.r R=trLKW
7 eqid meetK=meetK
8 1 2 7 3 4 5 6 trlval2 KHLWHFTPA¬P˙WRF=P˙FPmeetKW
9 8 oveq1d KHLWHFTPA¬P˙WRF˙P=P˙FPmeetKW˙P
10 simp1l KHLWHFTPA¬P˙WKHL
11 10 hllatd KHLWHFTPA¬P˙WKLat
12 simp3l KHLWHFTPA¬P˙WPA
13 eqid BaseK=BaseK
14 13 3 atbase PAPBaseK
15 12 14 syl KHLWHFTPA¬P˙WPBaseK
16 13 4 5 6 trlcl KHLWHFTRFBaseK
17 16 3adant3 KHLWHFTPA¬P˙WRFBaseK
18 13 2 latjcom KLatPBaseKRFBaseKP˙RF=RF˙P
19 11 15 17 18 syl3anc KHLWHFTPA¬P˙WP˙RF=RF˙P
20 13 4 5 ltrncl KHLWHFTPBaseKFPBaseK
21 15 20 syld3an3 KHLWHFTPA¬P˙WFPBaseK
22 13 2 latjcl KLatPBaseKFPBaseKP˙FPBaseK
23 11 15 21 22 syl3anc KHLWHFTPA¬P˙WP˙FPBaseK
24 simp1r KHLWHFTPA¬P˙WWH
25 13 4 lhpbase WHWBaseK
26 24 25 syl KHLWHFTPA¬P˙WWBaseK
27 13 1 2 latlej1 KLatPBaseKFPBaseKP˙P˙FP
28 11 15 21 27 syl3anc KHLWHFTPA¬P˙WP˙P˙FP
29 13 1 2 7 3 atmod2i1 KHLPAP˙FPBaseKWBaseKP˙P˙FPP˙FPmeetKW˙P=P˙FPmeetKW˙P
30 10 12 23 26 28 29 syl131anc KHLWHFTPA¬P˙WP˙FPmeetKW˙P=P˙FPmeetKW˙P
31 eqid 1.K=1.K
32 1 2 31 3 4 lhpjat1 KHLWHPA¬P˙WW˙P=1.K
33 32 3adant2 KHLWHFTPA¬P˙WW˙P=1.K
34 33 oveq2d KHLWHFTPA¬P˙WP˙FPmeetKW˙P=P˙FPmeetK1.K
35 hlol KHLKOL
36 10 35 syl KHLWHFTPA¬P˙WKOL
37 13 7 31 olm11 KOLP˙FPBaseKP˙FPmeetK1.K=P˙FP
38 36 23 37 syl2anc KHLWHFTPA¬P˙WP˙FPmeetK1.K=P˙FP
39 30 34 38 3eqtrrd KHLWHFTPA¬P˙WP˙FP=P˙FPmeetKW˙P
40 9 19 39 3eqtr4d KHLWHFTPA¬P˙WP˙RF=P˙FP