Metamath Proof Explorer


Theorem lhpocnel

Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses lhpocnel.l ˙=K
lhpocnel.o ˙=ocK
lhpocnel.a A=AtomsK
lhpocnel.h H=LHypK
Assertion lhpocnel KHLWH˙WA¬˙W˙W

Proof

Step Hyp Ref Expression
1 lhpocnel.l ˙=K
2 lhpocnel.o ˙=ocK
3 lhpocnel.a A=AtomsK
4 lhpocnel.h H=LHypK
5 2 3 4 lhpocat KHLWH˙WA
6 1 2 4 lhpocnle KHLWH¬˙W˙W
7 5 6 jca KHLWH˙WA¬˙W˙W