Metamath Proof Explorer


Theorem lhpocat

Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013)

Ref Expression
Hypotheses lhpocat.o ˙ = oc K
lhpocat.a A = Atoms K
lhpocat.h H = LHyp K
Assertion lhpocat K HL W H ˙ W A

Proof

Step Hyp Ref Expression
1 lhpocat.o ˙ = oc K
2 lhpocat.a A = Atoms K
3 lhpocat.h H = LHyp K
4 simpr K HL W H W H
5 eqid Base K = Base K
6 5 3 lhpbase W H W Base K
7 5 1 2 3 lhpoc K HL W Base K W H ˙ W A
8 6 7 sylan2 K HL W H W H ˙ W A
9 4 8 mpbid K HL W H ˙ W A