Metamath Proof Explorer


Theorem lhpocat

Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013)

Ref Expression
Hypotheses lhpocat.o = ( oc ‘ 𝐾 )
lhpocat.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpocat.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpocat ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑊 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 lhpocat.o = ( oc ‘ 𝐾 )
2 lhpocat.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lhpocat.h 𝐻 = ( LHyp ‘ 𝐾 )
4 simpr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑊𝐻 )
5 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
6 5 3 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
7 5 1 2 3 lhpoc ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑊𝐻 ↔ ( 𝑊 ) ∈ 𝐴 ) )
8 6 7 sylan2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑊𝐻 ↔ ( 𝑊 ) ∈ 𝐴 ) )
9 4 8 mpbid ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑊 ) ∈ 𝐴 )