Metamath Proof Explorer


Theorem lhpocat

Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013)

Ref Expression
Hypotheses lhpocat.o
|- ._|_ = ( oc ` K )
lhpocat.a
|- A = ( Atoms ` K )
lhpocat.h
|- H = ( LHyp ` K )
Assertion lhpocat
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` W ) e. A )

Proof

Step Hyp Ref Expression
1 lhpocat.o
 |-  ._|_ = ( oc ` K )
2 lhpocat.a
 |-  A = ( Atoms ` K )
3 lhpocat.h
 |-  H = ( LHyp ` K )
4 simpr
 |-  ( ( K e. HL /\ W e. H ) -> W e. H )
5 eqid
 |-  ( Base ` K ) = ( Base ` K )
6 5 3 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
7 5 1 2 3 lhpoc
 |-  ( ( K e. HL /\ W e. ( Base ` K ) ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) )
8 6 7 sylan2
 |-  ( ( K e. HL /\ W e. H ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) )
9 4 8 mpbid
 |-  ( ( K e. HL /\ W e. H ) -> ( ._|_ ` W ) e. A )