Metamath Proof Explorer


Theorem lhpoc

Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpoc.b
|- B = ( Base ` K )
lhpoc.o
|- ._|_ = ( oc ` K )
lhpoc.a
|- A = ( Atoms ` K )
lhpoc.h
|- H = ( LHyp ` K )
Assertion lhpoc
|- ( ( K e. HL /\ W e. B ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) )

Proof

Step Hyp Ref Expression
1 lhpoc.b
 |-  B = ( Base ` K )
2 lhpoc.o
 |-  ._|_ = ( oc ` K )
3 lhpoc.a
 |-  A = ( Atoms ` K )
4 lhpoc.h
 |-  H = ( LHyp ` K )
5 eqid
 |-  ( 1. ` K ) = ( 1. ` K )
6 eqid
 |-  ( 
7 1 5 6 4 islhp2
 |-  ( ( K e. HL /\ W e. B ) -> ( W e. H <-> W ( 
8 1 5 2 6 3 1cvrco
 |-  ( ( K e. HL /\ W e. B ) -> ( W (  ( ._|_ ` W ) e. A ) )
9 7 8 bitrd
 |-  ( ( K e. HL /\ W e. B ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) )