Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhpoc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lhpoc.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| lhpoc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| lhpoc.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
| Assertion | lhpoc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lhpoc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lhpoc.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 3 | lhpoc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | lhpoc.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 7 | 1 5 6 4 | islhp2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) | 
| 8 | 1 5 2 6 3 | 1cvrco | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) | 
| 9 | 7 8 | bitrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) |