| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpoc.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lhpoc.o | ⊢  ⊥   =  ( oc ‘ 𝐾 ) | 
						
							| 3 |  | lhpoc.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | lhpoc.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 6 | 1 2 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑊  ∈  𝐵 )  →  (  ⊥  ‘ 𝑊 )  ∈  𝐵 ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐵 )  →  (  ⊥  ‘ 𝑊 )  ∈  𝐵 ) | 
						
							| 8 | 1 2 3 4 | lhpoc | ⊢ ( ( 𝐾  ∈  HL  ∧  (  ⊥  ‘ 𝑊 )  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑊 )  ∈  𝐻  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑊 ) )  ∈  𝐴 ) ) | 
						
							| 9 | 7 8 | syldan | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑊 )  ∈  𝐻  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑊 ) )  ∈  𝐴 ) ) | 
						
							| 10 | 1 2 | opococ | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑊  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 11 | 5 10 | sylan | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐵 )  →  ( (  ⊥  ‘ (  ⊥  ‘ 𝑊 ) )  ∈  𝐴  ↔  𝑊  ∈  𝐴 ) ) | 
						
							| 13 | 9 12 | bitr2d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐵 )  →  ( 𝑊  ∈  𝐴  ↔  (  ⊥  ‘ 𝑊 )  ∈  𝐻 ) ) |