| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpocnle.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | lhpocnle.o | ⊢  ⊥   =  ( oc ‘ 𝐾 ) | 
						
							| 3 |  | lhpocnle.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐾  ∈  AtLat ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊  ∈  𝐻 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 8 | 7 3 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 10 | 7 2 9 3 | lhpoc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑊  ∈  𝐻  ↔  (  ⊥  ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) ) ) | 
						
							| 11 | 8 10 | sylan2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝑊  ∈  𝐻  ↔  (  ⊥  ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) ) ) | 
						
							| 12 | 6 11 | mpbid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  (  ⊥  ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 13 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 14 | 13 9 | atn0 | ⊢ ( ( 𝐾  ∈  AtLat  ∧  (  ⊥  ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) )  →  (  ⊥  ‘ 𝑊 )  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 15 | 5 12 14 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  (  ⊥  ‘ 𝑊 )  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 16 | 15 | neneqd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ¬  (  ⊥  ‘ 𝑊 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  (  ⊥  ‘ 𝑊 )  ≤  𝑊 ) | 
						
							| 18 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  𝐾  ∈  Lat ) | 
						
							| 20 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  𝐾  ∈  OP ) | 
						
							| 22 | 8 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 23 | 7 2 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  (  ⊥  ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 24 | 21 22 23 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  (  ⊥  ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 25 | 7 1 | latref | ⊢ ( ( 𝐾  ∈  Lat  ∧  (  ⊥  ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  (  ⊥  ‘ 𝑊 )  ≤  (  ⊥  ‘ 𝑊 ) ) | 
						
							| 26 | 19 24 25 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  (  ⊥  ‘ 𝑊 )  ≤  (  ⊥  ‘ 𝑊 ) ) | 
						
							| 27 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 28 | 7 1 27 | latlem12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( (  ⊥  ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 )  ∧  (  ⊥  ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( (  ⊥  ‘ 𝑊 )  ≤  𝑊  ∧  (  ⊥  ‘ 𝑊 )  ≤  (  ⊥  ‘ 𝑊 ) )  ↔  (  ⊥  ‘ 𝑊 )  ≤  ( 𝑊 ( meet ‘ 𝐾 ) (  ⊥  ‘ 𝑊 ) ) ) ) | 
						
							| 29 | 19 24 22 24 28 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  ( ( (  ⊥  ‘ 𝑊 )  ≤  𝑊  ∧  (  ⊥  ‘ 𝑊 )  ≤  (  ⊥  ‘ 𝑊 ) )  ↔  (  ⊥  ‘ 𝑊 )  ≤  ( 𝑊 ( meet ‘ 𝐾 ) (  ⊥  ‘ 𝑊 ) ) ) ) | 
						
							| 30 | 17 26 29 | mpbi2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  (  ⊥  ‘ 𝑊 )  ≤  ( 𝑊 ( meet ‘ 𝐾 ) (  ⊥  ‘ 𝑊 ) ) ) | 
						
							| 31 | 7 2 27 13 | opnoncon | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑊 ( meet ‘ 𝐾 ) (  ⊥  ‘ 𝑊 ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 32 | 21 22 31 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  ( 𝑊 ( meet ‘ 𝐾 ) (  ⊥  ‘ 𝑊 ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 33 | 30 32 | breqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  (  ⊥  ‘ 𝑊 )  ≤  ( 0. ‘ 𝐾 ) ) | 
						
							| 34 | 7 1 13 | ople0 | ⊢ ( ( 𝐾  ∈  OP  ∧  (  ⊥  ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( (  ⊥  ‘ 𝑊 )  ≤  ( 0. ‘ 𝐾 )  ↔  (  ⊥  ‘ 𝑊 )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 35 | 21 24 34 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  ( (  ⊥  ‘ 𝑊 )  ≤  ( 0. ‘ 𝐾 )  ↔  (  ⊥  ‘ 𝑊 )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 36 | 33 35 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  (  ⊥  ‘ 𝑊 )  ≤  𝑊 )  →  (  ⊥  ‘ 𝑊 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 37 | 16 36 | mtand | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ¬  (  ⊥  ‘ 𝑊 )  ≤  𝑊 ) |