| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpocnle.l |  | 
						
							| 2 |  | lhpocnle.o |  | 
						
							| 3 |  | lhpocnle.h |  | 
						
							| 4 |  | hlatl |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 3 | lhpbase |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 7 2 9 3 | lhpoc |  | 
						
							| 11 | 8 10 | sylan2 |  | 
						
							| 12 | 6 11 | mpbid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 9 | atn0 |  | 
						
							| 15 | 5 12 14 | syl2anc |  | 
						
							| 16 | 15 | neneqd |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | hllat |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 |  | hlop |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 | 8 | ad2antlr |  | 
						
							| 23 | 7 2 | opoccl |  | 
						
							| 24 | 21 22 23 | syl2anc |  | 
						
							| 25 | 7 1 | latref |  | 
						
							| 26 | 19 24 25 | syl2anc |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 7 1 27 | latlem12 |  | 
						
							| 29 | 19 24 22 24 28 | syl13anc |  | 
						
							| 30 | 17 26 29 | mpbi2and |  | 
						
							| 31 | 7 2 27 13 | opnoncon |  | 
						
							| 32 | 21 22 31 | syl2anc |  | 
						
							| 33 | 30 32 | breqtrd |  | 
						
							| 34 | 7 1 13 | ople0 |  | 
						
							| 35 | 21 24 34 | syl2anc |  | 
						
							| 36 | 33 35 | mpbid |  | 
						
							| 37 | 16 36 | mtand |  |