Metamath Proof Explorer


Theorem hlatl

Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )

Proof

Step Hyp Ref Expression
1 hlcvl ( 𝐾 ∈ HL → 𝐾 ∈ CvLat )
2 cvlatl ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat )
3 1 2 syl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )