Metamath Proof Explorer


Theorem lhpoc2N

Description: The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lhpoc.b B=BaseK
lhpoc.o ˙=ocK
lhpoc.a A=AtomsK
lhpoc.h H=LHypK
Assertion lhpoc2N KHLWBWA˙WH

Proof

Step Hyp Ref Expression
1 lhpoc.b B=BaseK
2 lhpoc.o ˙=ocK
3 lhpoc.a A=AtomsK
4 lhpoc.h H=LHypK
5 hlop KHLKOP
6 1 2 opoccl KOPWB˙WB
7 5 6 sylan KHLWB˙WB
8 1 2 3 4 lhpoc KHL˙WB˙WH˙˙WA
9 7 8 syldan KHLWB˙WH˙˙WA
10 1 2 opococ KOPWB˙˙W=W
11 5 10 sylan KHLWB˙˙W=W
12 11 eleq1d KHLWB˙˙WAWA
13 9 12 bitr2d KHLWBWA˙WH