Metamath Proof Explorer
		
		
		
		Description:  The predicate "is a co-atom (lattice hyperplane)".  (Contributed by NM, 18-May-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lhpset.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | lhpset.u | ⊢  1   =  ( 1. ‘ 𝐾 ) | 
					
						|  |  | lhpset.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
					
						|  |  | lhpset.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
				
					|  | Assertion | islhp2 | ⊢  ( ( 𝐾  ∈  𝐴  ∧  𝑊  ∈  𝐵 )  →  ( 𝑊  ∈  𝐻  ↔  𝑊 𝐶  1  ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpset.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lhpset.u | ⊢  1   =  ( 1. ‘ 𝐾 ) | 
						
							| 3 |  | lhpset.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 4 |  | lhpset.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 | 1 2 3 4 | islhp | ⊢ ( 𝐾  ∈  𝐴  →  ( 𝑊  ∈  𝐻  ↔  ( 𝑊  ∈  𝐵  ∧  𝑊 𝐶  1  ) ) ) | 
						
							| 6 | 5 | baibd | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑊  ∈  𝐵 )  →  ( 𝑊  ∈  𝐻  ↔  𝑊 𝐶  1  ) ) |