Metamath Proof Explorer


Theorem islhp2

Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpset.b B=BaseK
lhpset.u 1˙=1.K
lhpset.c C=K
lhpset.h H=LHypK
Assertion islhp2 KAWBWHWC1˙

Proof

Step Hyp Ref Expression
1 lhpset.b B=BaseK
2 lhpset.u 1˙=1.K
3 lhpset.c C=K
4 lhpset.h H=LHypK
5 1 2 3 4 islhp KAWHWBWC1˙
6 5 baibd KAWBWHWC1˙