Metamath Proof Explorer


Theorem lhpocnel2

Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses lhpocnel2.l ˙=K
lhpocnel2.a A=AtomsK
lhpocnel2.h H=LHypK
lhpocnel2.p P=ocKW
Assertion lhpocnel2 KHLWHPA¬P˙W

Proof

Step Hyp Ref Expression
1 lhpocnel2.l ˙=K
2 lhpocnel2.a A=AtomsK
3 lhpocnel2.h H=LHypK
4 lhpocnel2.p P=ocKW
5 eqid ocK=ocK
6 1 5 2 3 lhpocnel KHLWHocKWA¬ocKW˙W
7 4 eleq1i PAocKWA
8 4 breq1i P˙WocKW˙W
9 8 notbii ¬P˙W¬ocKW˙W
10 7 9 anbi12i PA¬P˙WocKWA¬ocKW˙W
11 6 10 sylibr KHLWHPA¬P˙W