Metamath Proof Explorer


Theorem trlval2

Description: The value of the trace of a lattice translation, given any atom P not under the fiducial co-atom W . Note: this requires only the weaker assumption K e. Lat ; we use K e. HL for convenience. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlval2.l = ( le ‘ 𝐾 )
trlval2.j = ( join ‘ 𝐾 )
trlval2.m = ( meet ‘ 𝐾 )
trlval2.a 𝐴 = ( Atoms ‘ 𝐾 )
trlval2.h 𝐻 = ( LHyp ‘ 𝐾 )
trlval2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlval2.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 trlval2.l = ( le ‘ 𝐾 )
2 trlval2.j = ( join ‘ 𝐾 )
3 trlval2.m = ( meet ‘ 𝐾 )
4 trlval2.a 𝐴 = ( Atoms ‘ 𝐾 )
5 trlval2.h 𝐻 = ( LHyp ‘ 𝐾 )
6 trlval2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 trlval2.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
9 8 anim1i ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 10 1 2 3 4 5 6 7 trlval ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ) )
12 11 3adant3 ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ) )
13 simp1l ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐾 ∈ Lat )
14 simp3l ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑃𝐴 )
15 10 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
16 14 15 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
17 10 5 6 ltrncl ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) )
18 16 17 syld3an3 ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) )
19 10 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ( 𝐹𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
20 13 16 18 19 syl3anc ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝐹𝑃 ) ) ∈ ( Base ‘ 𝐾 ) )
21 simp1r ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑊𝐻 )
22 10 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
23 21 22 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
24 10 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ( 𝐹𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
25 13 20 23 24 syl3anc ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
26 simpl3l ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → 𝑃𝐴 )
27 simpl3r ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ¬ 𝑃 𝑊 )
28 breq1 ( 𝑞 = 𝑃 → ( 𝑞 𝑊𝑃 𝑊 ) )
29 28 notbid ( 𝑞 = 𝑃 → ( ¬ 𝑞 𝑊 ↔ ¬ 𝑃 𝑊 ) )
30 id ( 𝑞 = 𝑃𝑞 = 𝑃 )
31 fveq2 ( 𝑞 = 𝑃 → ( 𝐹𝑞 ) = ( 𝐹𝑃 ) )
32 30 31 oveq12d ( 𝑞 = 𝑃 → ( 𝑞 ( 𝐹𝑞 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
33 32 oveq1d ( 𝑞 = 𝑃 → ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) )
34 33 eqeq2d ( 𝑞 = 𝑃 → ( 𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ↔ 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ) )
35 29 34 imbi12d ( 𝑞 = 𝑃 → ( ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ↔ ( ¬ 𝑃 𝑊𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ) ) )
36 35 rspcv ( 𝑃𝐴 → ( ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) → ( ¬ 𝑃 𝑊𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ) ) )
37 36 com23 ( 𝑃𝐴 → ( ¬ 𝑃 𝑊 → ( ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) → 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ) ) )
38 26 27 37 sylc ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) → 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ) )
39 simp11 ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) )
40 simp12 ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → 𝐹𝑇 )
41 simp13l ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → 𝑃𝐴 )
42 simp13r ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → ¬ 𝑃 𝑊 )
43 simp3 ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → 𝑞𝐴 )
44 simp2 ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → ¬ 𝑞 𝑊 )
45 1 2 3 4 5 6 ltrnu ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) → ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) )
46 39 40 41 42 43 44 45 syl222anc ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) )
47 eqeq2 ( ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) → ( 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ↔ 𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) )
48 47 biimpd ( ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) → ( 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) → 𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) )
49 46 48 syl ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ¬ 𝑞 𝑊𝑞𝐴 ) → ( 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) → 𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) )
50 49 3exp ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ¬ 𝑞 𝑊 → ( 𝑞𝐴 → ( 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) → 𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ) ) )
51 50 com24 ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) → ( 𝑞𝐴 → ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ) ) )
52 51 ralrimdv ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) → ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ) )
53 52 adantr ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) → ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ) )
54 38 53 impbid ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ↔ 𝑥 = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) ) )
55 25 54 riota5 ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑞𝐴 ( ¬ 𝑞 𝑊𝑥 = ( ( 𝑞 ( 𝐹𝑞 ) ) 𝑊 ) ) ) = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) )
56 12 55 eqtrd ( ( ( 𝐾 ∈ Lat ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) )
57 9 56 syl3an1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) )