Metamath Proof Explorer


Theorem trlval

Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlset.b 𝐵 = ( Base ‘ 𝐾 )
trlset.l = ( le ‘ 𝐾 )
trlset.j = ( join ‘ 𝐾 )
trlset.m = ( meet ‘ 𝐾 )
trlset.a 𝐴 = ( Atoms ‘ 𝐾 )
trlset.h 𝐻 = ( LHyp ‘ 𝐾 )
trlset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlset.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) = ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 trlset.b 𝐵 = ( Base ‘ 𝐾 )
2 trlset.l = ( le ‘ 𝐾 )
3 trlset.j = ( join ‘ 𝐾 )
4 trlset.m = ( meet ‘ 𝐾 )
5 trlset.a 𝐴 = ( Atoms ‘ 𝐾 )
6 trlset.h 𝐻 = ( LHyp ‘ 𝐾 )
7 trlset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 trlset.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 1 2 3 4 5 6 7 8 trlset ( ( 𝐾𝑉𝑊𝐻 ) → 𝑅 = ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) )
10 9 fveq1d ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑅𝐹 ) = ( ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) ‘ 𝐹 ) )
11 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑝 ) = ( 𝐹𝑝 ) )
12 11 oveq2d ( 𝑓 = 𝐹 → ( 𝑝 ( 𝑓𝑝 ) ) = ( 𝑝 ( 𝐹𝑝 ) ) )
13 12 oveq1d ( 𝑓 = 𝐹 → ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) )
14 13 eqeq2d ( 𝑓 = 𝐹 → ( 𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ↔ 𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) )
15 14 imbi2d ( 𝑓 = 𝐹 → ( ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ↔ ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) ) )
16 15 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ↔ ∀ 𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) ) )
17 16 riotabidv ( 𝑓 = 𝐹 → ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) = ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) ) )
18 eqid ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) = ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) )
19 riotaex ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) ) ∈ V
20 17 18 19 fvmpt ( 𝐹𝑇 → ( ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) ‘ 𝐹 ) = ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) ) )
21 10 20 sylan9eq ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) = ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝐹𝑝 ) ) 𝑊 ) ) ) )