Metamath Proof Explorer


Theorem trlval

Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlset.b B=BaseK
trlset.l ˙=K
trlset.j ˙=joinK
trlset.m ˙=meetK
trlset.a A=AtomsK
trlset.h H=LHypK
trlset.t T=LTrnKW
trlset.r R=trLKW
Assertion trlval KVWHFTRF=ιxB|pA¬p˙Wx=p˙Fp˙W

Proof

Step Hyp Ref Expression
1 trlset.b B=BaseK
2 trlset.l ˙=K
3 trlset.j ˙=joinK
4 trlset.m ˙=meetK
5 trlset.a A=AtomsK
6 trlset.h H=LHypK
7 trlset.t T=LTrnKW
8 trlset.r R=trLKW
9 1 2 3 4 5 6 7 8 trlset KVWHR=fTιxB|pA¬p˙Wx=p˙fp˙W
10 9 fveq1d KVWHRF=fTιxB|pA¬p˙Wx=p˙fp˙WF
11 fveq1 f=Ffp=Fp
12 11 oveq2d f=Fp˙fp=p˙Fp
13 12 oveq1d f=Fp˙fp˙W=p˙Fp˙W
14 13 eqeq2d f=Fx=p˙fp˙Wx=p˙Fp˙W
15 14 imbi2d f=F¬p˙Wx=p˙fp˙W¬p˙Wx=p˙Fp˙W
16 15 ralbidv f=FpA¬p˙Wx=p˙fp˙WpA¬p˙Wx=p˙Fp˙W
17 16 riotabidv f=FιxB|pA¬p˙Wx=p˙fp˙W=ιxB|pA¬p˙Wx=p˙Fp˙W
18 eqid fTιxB|pA¬p˙Wx=p˙fp˙W=fTιxB|pA¬p˙Wx=p˙fp˙W
19 riotaex ιxB|pA¬p˙Wx=p˙Fp˙WV
20 17 18 19 fvmpt FTfTιxB|pA¬p˙Wx=p˙fp˙WF=ιxB|pA¬p˙Wx=p˙Fp˙W
21 10 20 sylan9eq KVWHFTRF=ιxB|pA¬p˙Wx=p˙Fp˙W