Metamath Proof Explorer


Theorem trlset

Description: The set of traces of lattice translations for a fiducial co-atom W . (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlset.b 𝐵 = ( Base ‘ 𝐾 )
trlset.l = ( le ‘ 𝐾 )
trlset.j = ( join ‘ 𝐾 )
trlset.m = ( meet ‘ 𝐾 )
trlset.a 𝐴 = ( Atoms ‘ 𝐾 )
trlset.h 𝐻 = ( LHyp ‘ 𝐾 )
trlset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlset.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlset ( ( 𝐾𝐶𝑊𝐻 ) → 𝑅 = ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 trlset.b 𝐵 = ( Base ‘ 𝐾 )
2 trlset.l = ( le ‘ 𝐾 )
3 trlset.j = ( join ‘ 𝐾 )
4 trlset.m = ( meet ‘ 𝐾 )
5 trlset.a 𝐴 = ( Atoms ‘ 𝐾 )
6 trlset.h 𝐻 = ( LHyp ‘ 𝐾 )
7 trlset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 trlset.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 1 2 3 4 5 6 trlfset ( 𝐾𝐶 → ( trL ‘ 𝐾 ) = ( 𝑤𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) ) )
10 9 fveq1d ( 𝐾𝐶 → ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) ) ‘ 𝑊 ) )
11 8 10 syl5eq ( 𝐾𝐶𝑅 = ( ( 𝑤𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) ) ‘ 𝑊 ) )
12 fveq2 ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
13 breq2 ( 𝑤 = 𝑊 → ( 𝑝 𝑤𝑝 𝑊 ) )
14 13 notbid ( 𝑤 = 𝑊 → ( ¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊 ) )
15 oveq2 ( 𝑤 = 𝑊 → ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) )
16 15 eqeq2d ( 𝑤 = 𝑊 → ( 𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ↔ 𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) )
17 14 16 imbi12d ( 𝑤 = 𝑊 → ( ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ↔ ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) )
18 17 ralbidv ( 𝑤 = 𝑊 → ( ∀ 𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ↔ ∀ 𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) )
19 18 riotabidv ( 𝑤 = 𝑊 → ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) = ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) )
20 12 19 mpteq12dv ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) )
21 eqid ( 𝑤𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) ) = ( 𝑤𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) )
22 fvex ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V
23 22 mptex ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) ∈ V
24 20 21 23 fvmpt ( 𝑊𝐻 → ( ( 𝑤𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) ) ‘ 𝑊 ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) )
25 7 mpteq1i ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) )
26 24 25 eqtr4di ( 𝑊𝐻 → ( ( 𝑤𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑤𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑤 ) ) ) ) ) ‘ 𝑊 ) = ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) )
27 11 26 sylan9eq ( ( 𝐾𝐶𝑊𝐻 ) → 𝑅 = ( 𝑓𝑇 ↦ ( 𝑥𝐵𝑝𝐴 ( ¬ 𝑝 𝑊𝑥 = ( ( 𝑝 ( 𝑓𝑝 ) ) 𝑊 ) ) ) ) )