Step |
Hyp |
Ref |
Expression |
1 |
|
trlset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
trlset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
trlset.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
trlset.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
trlset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
trlset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
trlset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
trlset.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 2 3 4 5 6
|
trlfset |
⊢ ( 𝐾 ∈ 𝐶 → ( trL ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝐾 ∈ 𝐶 → ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) ) ‘ 𝑊 ) ) |
11 |
8 10
|
syl5eq |
⊢ ( 𝐾 ∈ 𝐶 → 𝑅 = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) ) ‘ 𝑊 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
|
breq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑝 ≤ 𝑤 ↔ 𝑝 ≤ 𝑊 ) ) |
14 |
13
|
notbid |
⊢ ( 𝑤 = 𝑊 → ( ¬ 𝑝 ≤ 𝑤 ↔ ¬ 𝑝 ≤ 𝑊 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ↔ 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ↔ ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
18 |
17
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ↔ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
19 |
18
|
riotabidv |
⊢ ( 𝑤 = 𝑊 → ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
20 |
12 19
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ) |
21 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) ) |
22 |
|
fvex |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V |
23 |
22
|
mptex |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ∈ V |
24 |
20 21 23
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) ) ‘ 𝑊 ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ) |
25 |
7
|
mpteq1i |
⊢ ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
26 |
24 25
|
eqtr4di |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑤 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑤 ) ) ) ) ) ‘ 𝑊 ) = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ) |
27 |
11 26
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻 ) → 𝑅 = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ) |