Metamath Proof Explorer


Theorem cdlemk55

Description: Part of proof of Lemma K of Crawley p. 118. Line 11, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b
|- B = ( Base ` K )
cdlemk5.l
|- .<_ = ( le ` K )
cdlemk5.j
|- .\/ = ( join ` K )
cdlemk5.m
|- ./\ = ( meet ` K )
cdlemk5.a
|- A = ( Atoms ` K )
cdlemk5.h
|- H = ( LHyp ` K )
cdlemk5.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk5.r
|- R = ( ( trL ` K ) ` W )
cdlemk5.z
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
cdlemk5.y
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
cdlemk5.x
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
Assertion cdlemk55
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b
 |-  B = ( Base ` K )
2 cdlemk5.l
 |-  .<_ = ( le ` K )
3 cdlemk5.j
 |-  .\/ = ( join ` K )
4 cdlemk5.m
 |-  ./\ = ( meet ` K )
5 cdlemk5.a
 |-  A = ( Atoms ` K )
6 cdlemk5.h
 |-  H = ( LHyp ` K )
7 cdlemk5.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk5.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk5.z
 |-  Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
10 cdlemk5.y
 |-  Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
11 cdlemk5.x
 |-  X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
12 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) = ( R ` I ) ) -> ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) )
13 simpl21
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) = ( R ` I ) ) -> ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) )
14 simpl22
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) = ( R ` I ) ) -> G e. T )
15 simpl3
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) = ( R ` I ) ) -> ( P e. A /\ -. P .<_ W ) )
16 simpl23
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) = ( R ` I ) ) -> I e. T )
17 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) = ( R ` I ) ) -> ( R ` G ) = ( R ` I ) )
18 1 2 3 4 5 6 7 8 9 10 11 cdlemk55b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) = ( R ` I ) ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )
19 12 13 14 15 16 17 18 syl132anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) = ( R ` I ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )
20 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) =/= ( R ` I ) ) -> ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) )
21 simpl21
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) =/= ( R ` I ) ) -> ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) )
22 simpl22
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) =/= ( R ` I ) ) -> G e. T )
23 simpl3
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) =/= ( R ` I ) ) -> ( P e. A /\ -. P .<_ W ) )
24 simpl23
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) =/= ( R ` I ) ) -> I e. T )
25 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) =/= ( R ` I ) ) -> ( R ` G ) =/= ( R ` I ) )
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk53
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ ( I e. T /\ ( R ` G ) =/= ( R ` I ) ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )
27 20 21 22 23 24 25 26 syl132anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( R ` G ) =/= ( R ` I ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )
28 19 27 pm2.61dane
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ G e. T /\ I e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> [_ ( G o. I ) / g ]_ X = ( [_ G / g ]_ X o. [_ I / g ]_ X ) )