Metamath Proof Explorer


Theorem cdlemk55

Description: Part of proof of Lemma K of Crawley p. 118. Line 11, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk55 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W G I / g X = G / g X I / g X

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simpl1 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G = R I K HL W H R F = R N
13 simpl21 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G = R I F T F I B N T
14 simpl22 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G = R I G T
15 simpl3 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G = R I P A ¬ P ˙ W
16 simpl23 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G = R I I T
17 simpr K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G = R I R G = R I
18 1 2 3 4 5 6 7 8 9 10 11 cdlemk55b K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I G I / g X = G / g X I / g X
19 12 13 14 15 16 17 18 syl132anc K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G = R I G I / g X = G / g X I / g X
20 simpl1 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G R I K HL W H R F = R N
21 simpl21 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G R I F T F I B N T
22 simpl22 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G R I G T
23 simpl3 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G R I P A ¬ P ˙ W
24 simpl23 K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G R I I T
25 simpr K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G R I R G R I
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk53 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G I / g X = G / g X I / g X
27 20 21 22 23 24 25 26 syl132anc K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W R G R I G I / g X = G / g X I / g X
28 19 27 pm2.61dane K HL W H R F = R N F T F I B N T G T I T P A ¬ P ˙ W G I / g X = G / g X I / g X