Metamath Proof Explorer


Theorem cdlemk55b

Description: Lemma for cdlemk55 . (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk55b KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIGI/gX=G/gXI/gX

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp1ll KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIKHL
13 simp1lr KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIWH
14 1 6 7 8 cdlemftr2 KHLWHjTjIBRjRGRjRGI
15 12 13 14 syl2anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGI
16 simp11 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIKHLWHRF=RN
17 simp12 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIFTFIBNTGTPA¬P˙W
18 simp13 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIITRG=RI
19 simp2 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIjT
20 simp3 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIjIBRjRGRjRGI
21 1 2 3 4 5 6 7 8 9 10 11 cdlemk55a KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX=G/gXI/gX
22 16 17 18 19 20 21 syl113anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX=G/gXI/gX
23 22 rexlimdv3a KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX=G/gXI/gX
24 15 23 mpd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIGI/gX=G/gXI/gX