Metamath Proof Explorer


Theorem cdlemk55b

Description: Lemma for cdlemk55 . (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk55b K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I G I / g X = G / g X I / g X

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp1ll K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I K HL
13 simp1lr K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I W H
14 1 6 7 8 cdlemftr2 K HL W H j T j I B R j R G R j R G I
15 12 13 14 syl2anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I
16 simp11 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I K HL W H R F = R N
17 simp12 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I F T F I B N T G T P A ¬ P ˙ W
18 simp13 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I I T R G = R I
19 simp2 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I j T
20 simp3 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I j I B R j R G R j R G I
21 1 2 3 4 5 6 7 8 9 10 11 cdlemk55a K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I / g X = G / g X I / g X
22 16 17 18 19 20 21 syl113anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I / g X = G / g X I / g X
23 22 rexlimdv3a K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I j T j I B R j R G R j R G I G I / g X = G / g X I / g X
24 15 23 mpd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G = R I G I / g X = G / g X I / g X